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ABSTRACT 

 Myeloproliferative neoplasms (MPN) is a clonal disorder of hematopoietic 

lineage. MPN encompass three subtypes, namely polycythemia vera (PV), essential 

thrombocythemia (ET), and primary myelofibrosis (PMF) that are commonly associated 

with somatic mutation JAK2V617F. The family members of MPN patients are at high 

risk. There likely are additional genetic events that contribute to the pathogenesis of these 

phenotypically distinct disorders. To understand the etiology of the MPN phenotype and 

predisposition, we performed a genome-wide association (GWA) study followed by 

targeted sequencing using next generation sequencing technology. In a typical GWA 

study design, cases and controls are ideally matched for ethnicity, age, sex, socio-

economic background and other environmental factors. Instead of using a matched 

control study design, we developed a method using principal component analysis to use 

controls from public databases. The optimum number of cases and controls were 

calculated analytically and type I error rate and power was determined by simulation. We 

applied this method for our MPN GWA study. A JAK2 SNP rs10974944 was 

significantly associated with MPN risk after correcting for residual population 

stratification and multiple testing. Further genetic analysis has shown that the risk allele - 

"G" allele (GG or CG) at rs10974944 preferentially acquires the V617F mutation. This 

illustrates a complex interplay between somatic and germline genetics in MPN. To 

dissect the functional variant(s) and to understand the haplotype-specific acquisition of 

somatic mutations, we carried out targeted sequencing of the 300kb haplotype block 

harboring JAK2 using next generation sequencing technology (RainDance and SOLiD 

sequencing). We compared MPN cases that are homozygous for the risk allele (GG-MPN 
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cases) with the ones that are homozygous for wild type allele (CC- MPN cases). We 

found that there is no excess of single nucleotide variants in the JAK2 locus in GG-MPN 

cases compared to CC-MPN cases using the ancestral sequence as reference. However, 

we further explored the existence of selection pressure at JAK2 using HapMap phase III 

data and detected an excess of derived alleles at JAK2 when compared to ancestral 

repeats.  We further analyzed sequence specific differences between these two groups of 

patients and identified a candidate functional variant in the promoter region of JAK2 

gene that is predicted to bind to the transcription factor c-Fos in allele specific manner. 

We next analyzed the JAK2 susceptibility haplotype in MPN (also referred as MPN risk 

haplotype) and reconstructed the phylogenetic tree using PHYLIP. We discovered that 

MPN risk haplotype forms a separate cluster from other haplotypes when using 

chimpanzee as out-group. The sequence similarity of MPN risk haplotype was more close 

to chimpanzee. Thus, we concluded that JAK2 susceptibility haplotype in MPN is an 

ancestral haplotype compared to modern human population and is most compatible with 

the evolutionary model: ancestral susceptibility model of disease.  
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INTRODUCTION 

Myeloproliferative neoplasms 
 

 Myeloproliferative neoplasms (MPN) are a heterogeneous group of diseases 

characterized by aberrant proliferation of the myeloid lineages. They represent clonal 

hematopoietic stem cell disorders with an inherent tendency towards leukemic 

transformation. The classic BCR-ABL-negative MPNs include polycythemia vera (PV), 

essential thrombocythemia (ET) and primary myelofibrosis (PMF). They are uncommon 

tumors with yearly incident rates of 2.3 in 100,000 in the United States and primarily 

affect older adults, with a variable clinical presentation 1.  

 In1892, Louis Henri Vaquez first described PV in a patient and postulated that it 

was the result of hematopoietic cell proliferation 2. Gustav Hueck, a German physician 

first described PMF and noted the presence of bone marrow fibrosis in patients with PMF 

3. In 1934 Emil Epstein and Alfred Goedel described ET and recognized that patients 

with thrombocytosis without marked erythrocytosis constituted a distinct clinical 

syndrome 4. William Dameshek was the first to notice the clinical and bone marrow 

morphologic similarities between chronic myelogenous leukemia (CML), PV, ET, and 

PMF. He recognized their common trait of unregulated trilineage myeloproliferation and 

accordingly assigned the term myeloproliferative disorders (MPD) to describe them in a 

seminal 1951 commentary 5. The first formal attempt in establishing diagnostic criteria 

for the classic BCR–ABL-negative MPNs was undertaken by the Polycythemia Vera 

Study Group (PVSG), in 1967 6. The PVSG subsequently published similar diagnostic 

criteria for ET 7. 
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 PV is characterized by a proliferation of the erythroid lineage, resulting in 

increased erythroid cell mass, hemoglobin concentration, hematocrit value, and blood 

viscosity 5. Patients with PV have an increased incidence of thromboses, hemorrhage, 

peptic ulcers, and stroke 8.  ET is characterized by dysregulated proliferation of 

megakaryocytes and platelets in the bone marrow and peripheral blood with an increased 

risk of thrombosis and bleeding 9. In PMF, the dominant pathologic change is progressive 

bone marrow fibrosis and splenomegaly 10,11. 

 Of the three classic MPNs, PMF is the most rare and has the worst outcome. The 

death of a PMF patient is frequently related to bone marrow failure with resultant 

systemic infection or fatal hemorrhage in many cases. PV, in contrast, has a more 

indolent course, but there is considerable associated mortality due to thromboses and/or 

hemorrhage which can be treated with moderate success by therapeutic phlebotomy 12. 

The risk of transformation to an acute leukemia is highest in PMF (5%–30%) but can 

occur in ET and PV 13.  
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JAK2 somatic mutation 
 

 The genetic basis for MPN became known in 2005 when 4 separate groups 

identified a somatic gain-of –function mutation in the Janus kinase 2 (JAK2) gene on 

chromosome 9p in PV, ET, and PMF patients 14-17. The JAK2 gene is a member of a large 

family of tyrosine kinases involved in cytokine receptor signaling. JAK2 is integral to 

intracellular signal transduction after the activation of receptors for erythropoietin, 

thrombopoietin, granulocyte-colony stimulating factor, and granulocyte-macrophage 

colony stimulating factor in the context of hematopoiesis. The signal transduction of 

these cytokines and their receptors is crucial for the coordinated proliferation and 

differentiation of the erythroid, megakaryocytic, and granulocytic lineages from 

pluripotent hematopoietic stem cells (HSCs). The JAK proteins have 2 adjacent kinase-

like domains (JH1 and JH2), of which only the JH1 domain has enzymatic activity. The 

JH2 domain, or pseudokinase domain, is a negative regulator of kinase activity. The point 

mutation in JAK2 found by different group results in the substitution of valine for 

phenylalanine at position 617 in the JH2 regulatory domain of the JAK2 protein and is 

known as the JAK2V617F mutation. As a result of this substitution, JAK2 becomes 

constitutive activate and acts independent of ligand 18. This mutation occurs at a primitive 

stem cell level, mostly HSCs and confers cytokine hypersensitivity and cytokine-

independent signaling, leading to the downstream activation of multiple signaling 

cascades, such as the STAT proteins, phosphatidylinositol 3-kinase–AKT pathway, and 

mitogen-activated protein kinases and account for the proliferative component in the 

MPN 19,20. Experiments performed in animal models confirmed that the mutated 
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JAK2V617F was constitutively active and the role of JAK2V617F in the pathogenesis of 

PV 21.  

 JAK2V617F is the most prevalent mutation in BCR-ABL1–negative MPN: the 

mutational frequency is approximately 96% in PV, 55% in ET, and 65% in PMF14. This 

mutation is also found at lower percentages in a number of other myeloid malignancies, 

such as systemic mastocytosis, acute myeloid leukemia, and chronic myelomonocytic 

leukemia, but not in lymphomas or solid tumors. In 2008, the World Health Organization 

(WHO) included screening for JAK2V617F as diagnostic criteria for PV, ET and PMF 22. 

The mutation cannot be used to distinguish one MPN from another, but it does 

complement histology in the diagnosis of PV, ET and PMF. The identification of the 

common JAK2V617F somatic mutation in ET, PV, and PMF has also led to targeted 

therapy using small-molecule JAK2 inhibitors 23,24. 

 



 5 

MPN phenotype pleiotropy 
 

 The three subtypes of MPN are pathologically distinct disorders despite the 

shared genetic lesion JAK2V617F. The mechanism of how a single mutation can produce 

3 different diseases is not clear. One explanation of MPN pleiotropy is a gene dosage 

effect of JAK2.  JAK2V617F is an acquired hematopoietic stem cell mutation, yet, in 

many patients, hematopoiesis remains polyclonal since not all stem cell progenitors 

within an individual carry the mutation. In addition, many patients with the JAK2V617F 

mutation acquire two copies through an acquired uniparental disomy (UPD) at 

chromosome 9p24 25. Thus, because of the variability in the number of cells that carry the 

mutation and the number of JAK2V617G alleles harbored within each cell, there is 

marked variability in JAK2V617F gene dosage. In murine and human studies, the 

JAK2V617F allele burden is lowest in ET compared with that of PV and PMF 26-28. Sex is 

also an independent modifier of the MPN, with women having lower mutational burdens 

in JAK2V617F than men 29. 

 Variation in JAK2V617F mutational burden alone, however, cannot explain the 

variability of disease phenotypes within the MPN. Host genetic background has been 

shown to play a significant role in the acquisition of the JAK2 mutation itself in mouse 

models30,31.  

 Additional somatic mutations have been identified in myeloproliferative neoplasm 

patients and may also contribute to the pathogenesis of JAK2V617F positive PV, ET, and 

PMF and MPN pleiotropy. Currently known MPN-associated mutations involve JAK2 

(exon 12) 32-34, MPL (exon 10) 35-37, TET2 38,39, ASXL1 40,41, IDH1and IDH2 42,43 , CBL44 ,  
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IKZF1 45,46,  LNK 47,48, and EZH2 49. Most of these mutations originate at the progenitor 

cell level but they do not necessarily represent the primary clonogenic event and are not 

mutually exclusive. JAK2 exon 12, MPL and LNK mutations are relatively specific to 

JAK2V617F-negative MPN whereas the mutations observed in TET2 (TET oncogene 

family member 2; 4q24) gene are seen in both JAK2V617F positive and negative MPN 

50. TET2, EZH2 and ASXL1 may contribute to epigenetic regulation of hematopoeisis39,49. 

 Thus, on the one hand, the sole JAK2V617F mutation is sufficient to induce an 

MPN, and the MPN phenotype depends on the cell targeted by the mutation or the genetic 

background of the patients or the intensity of JAK2V617F signaling. On the other hand, 

JAK2V617F can be an event secondary to a first hit that varies between the diseases.
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 MPN familial studies 

Familial clusters of MPNs are characterized by clinical and genetic heterogeneity. 

First, within MPN families, distinct clinical entities are observed, the three main ones 

being PV, ET, and PMF. Second, disease evolution can be highly variable within families 

presenting with the same type of MPN. The primary familial congenital polycythemia 

and hereditary thrombocythemias, which are rare Mendelian disorders, are caused by 

mutations in the erythropoietin receptor gene and thrombopoetin gene, respectively 51,52. 

These mutations have not been detected in the more common MPNs.53 

 The evidence for possible heritable component to MPN came from a small 

number of case reports and case series describing families with multiple affected 

individuals. JAK2 mutation analysis in these familial cases has led to several important 

observations. Even among familial cases in which all affected family members shared the 

V617F mutation, this mutation was identified as an acquired or somatic mutation and not 

an inherited mutation. Overall, the incidence of the V617F mutation is similar in familial 

and sporadic MPNs, and is found in 55% to 75% of familial cases of PV versus 95% of 

sporadic cases, 75%–90% of familial cases of PMF versus 50% of sporadic cases, and 

50%–69% of familial cases of ET versus 50% of sporadic cases 54.  

  In another study of 458 patients with apparently sporadic MPNs, 35 were found to 

be members of multiplex MPN families 55. From this study, it was estimated that the 

prevalence of familial disease was 8.7%, 5.9%, and 8.2% for PV, ET, and PMF 

respectively. 



 8 

  In the only population-based study yet performed, investigators from Sweden 

found that the first-degree relatives of MPN patients had significantly increased risks of 

PV (RR = 5.7; 3.5-9.1) and ET (RR = 7.4; 3.7-14.8). The Swedish study‘s findings 

support the hypothesis that common, strong, shared susceptibility genes predispose to 

PV, ET, MF, and possibly CML. In many of these kindreds the inheritance pattern is 

consistent with autosomal dominant inheritance with incomplete penetrance 56. 

 The evidence from familial MPN studies suggests that additional inherited alleles 

that predispose to MPN development or inherited modifiers that contribute to the clinical 

phenotype of MPN contribute to the pathogenesis of PV, ET, and PMF.  
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Genome Wide Association Studies 
 

 In recent years, a genome wide association (GWA) study has been advocated as a 

method of choice to identify genetic variant(s) associated with various common diseases. 

The Human Genome Project stimulated the efforts to characterize the most abundant 

genetic variants in the human genome, single nucleotide polymorphisms (SNPs). SNPs 

are DNA sequence variations that occur when a single nucleotide (A,T,C,or G) in the 

genome sequence is altered, and it must occur in at least 1% of the population. An 

estimated 3 million SNPs, which make up about 90% of all human genetic variation, 

occur every 100 to 300 bases along the 3-billion-base human genome. The nonrandom 

association between neighboring SNPs is called linkage disequilibrium; alleles of SNPs 

in high linkage disequilibrium are almost always inherited together and can serve as 

proxies for each other. Their correlation with each other in the population is measured by 

the r2 statistic, which is the proportion of variation of one SNP explained by the other, 

and ranges from 0 (no association) to 1 (perfect correlation).  This approach relies on the 

foundation of data produced by the International Human HapMap Project 57.  Common 

genetic variation by and large is organized in “haplotype blocks,” local regions that have 

not been broken up by meiotic recombination and are separated by recombination “hot 

spots” that occur every 100–200 kb. These observations provided the empirical 

foundation for the construction of a haplotype map of the human genome for diverse 

populations. This haplotypic structure of the human genome makes it possible to survey 

the genome for common variability associated with the risk of disease simply by 

genotyping approximately 500,000 to 1 million judiciously chosen markers known as 

tagging SNPs 58, in the genome of several thousand case subjects and control subjects. 
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The development of latest SNP chip technologies can now scan upto 1million SNPs thus 

allowing GWAS results hold the promise of revealing causal genes not previously 

suspected in disease etiology or genetic effects of non-genic DNA regions. 

 The impetus behind these studies can be traced back to two key papers from 1996 

59,60. These two papers argued that common variants may underlie many common 

diseases and would be more easily found using population-based association studies 

rather than family-based linkage analysis. This led to the common disease common 

variant hypothesis, first proposed in 2001 53. It states that complex diseases are caused by 

the interaction of common alleles at a small group of susceptibility loci. These common 

alleles are not population specific, but are present at >1% minor allele frequency in 

multiple populations.  
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Linkage studies versus Genome wide association studies 
 

 Early genetic mapping studies in humans utilized linkage mapping, a 

methodology that traces the transmission of phenotypes with genetic markers through 

pedigrees with positional cloning used to find gene mutations that lead to monogenic 

diseases. The linkage studies have been successful in identifying highly penetrant genetic 

variants of large effect [odds ratio >100] underlying hundreds of Mendelian diseases (for 

example, the HTT gene in Huntington's disease 61,62 and the CFTR gene in cystic fibrosis 

63,64). These searches have mostly led to identification of mutations that alter the amino 

acid sequence of a protein and enormously increase the risk of disease. Several common 

disease-predisposing variants that are associated with common disease variation were 

identified in early linkage/candidate gene studies, e.g., Factor VLeiden in deep venous 

thrombosis 64,65 the APOEε-4 allele in Alzheimer's disease 65, and PPARγ in type 2 

diabetes 66. The major limitations of linkage studies are 1) relatively low power for 

complex disorders influenced by multiple genes, and 2) the large size of the chromosomal 

regions shared among family members (often comprising genomic regions of 5-10 Mb 

harboring hundreds of genes), in whom it can be difficult to narrow the linkage signal 

sufficiently to identify a causative gene.  

 In contrast to monogenic traits, complex traits have been more difficult to unravel 

using linkage approaches. GWA study is based on population-based samples (“common 

disease/common variant” (CDCV) hypothesis) and has power to identify common 

variants of modest effect, which could not be found using traditional linkage-based 

approaches. The association studies are able to refine genomic loci to roughly 10–100kb, 
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often just a few genes. Thus GWA studies build on the valuable lessons learned from 

family linkage studies, as well as the expanding knowledge of the relationships among 

SNP variants generated by the International HapMap Project 57. 
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 GWAS study design  
 

 The typical GWA study has 4 parts: (1) selection of a large number of individuals 

with the disease or trait of interest and a suitable comparison group; (2) DNA isolation, 

genotyping, and quality control to ensure genotyping quality; (3) statistical tests for 

associations between the SNPs passing quality thresholds and the disease/trait; and (4) 

replication of identified associations in an independent population sample or examination 

of functional implications experimentally. 

 The most frequently used GWA study design has been the case-control design, in 

which allele frequencies in patients with the disease of interest are compared to those in a 

disease-free comparison group. Cohort studies involve collecting extensive baseline 

information in a large number of individuals who are then observed to assess the 

incidence of disease in subgroups defined by genetic variants.  

 Using the various genotyping platforms developed by commercial companies 

Affymetrix and Illumina, upto 1 Million SNPs can be genotyped at once. Genotyping 

platforms comprising 500,000 to 1,000,000 SNPs have been estimated to capture 67% to 

89% of common SNP variation in populations of European and Asian ancestry and 46% 

to 66% of variation in individuals of African ancestry 67. Genotyping errors, especially if 

occurring differentially between cases and controls, are an important cause of spurious 

associations and must be diligently sought and corrected 68. A number of quality control 

features should be applied both on a per-sample and a per-SNP basis. Checks on sample 

identity to avoid sample mix-ups and a minimum rate of successfully genotyped SNPs 

per sample (usually 80%-90% of SNPs attempted) should be determined.  The quality 
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control filters for probable genotyping errors, include the following: (1) the proportion of 

samples for which a SNP can be measured (the SNP call rate, typically >95%); (2) the 

minor allele frequency (often >1%, as rarer SNPs are difficult to measure reliably); (3) 

severe violations of Hardy-Weinberg equilibrium; and (4) concordance rates in duplicate 

samples (typically >99.5%) are regularly performed. 

Statistical tests for association 

 Associations with the two alleles of each SNP are tested in a relatively 

straightforward manner by comparing the frequency of each allele in cases and controls. 

The most powerful tool for the analysis of GWA data has been a single-point, one degree 

of freedom test of association, such as the Cochran–Armitage test. Such tests allow 

comparison of the genotype distributions of cases and controls at each SNP in turn, and 

can be conducted with or without adjustment for relevant covariates. The different 

genetic models (dominant, recessive, or additive) may be included in the analysis, 

although additive models, in which each copy of the allele is assumed to increase risk by 

the same amount, tend to be the most common. Odds ratios (OR) of disease associated 

with the risk allele or genotype(s) can then be calculated and are typically modest, often 

in the range of 1.2 to 1.5. Many studies also calculate population attributable risk, 

classically defined as the proportion of disease in the population associated with a given 

risk factor. Many software are available for analysis with PLINK being the most popular 

GWAS analysis package 69. 

When testing 1 million SNPs for association, 50,000 SNPs will appear to be 

“associated” with disease at the conventional P < .05 level of significance. Almost all are 

http://www.nature.com/nrg/journal/v9/n5/glossary/nrg2344.html#df16
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false positives and due to chance alone- this is known as the multiple testing problem. 

The most common manner of dealing with this problem is to reduce the false-positive 

rate by applying the Bonferroni correction, in which the conventional P value is divided 

by the number of tests performed 70. A 1 million SNP survey would thus use a threshold 

of P < .05/106, or 5 × 10−8, to identify associations unlikely to have occurred by chance. 

Other approaches have been proposed, including estimation of the false discovery rate or 

proportion of significant associations that are actually false positive associations, false-

positive report probability 71,72, calculation of probability that the null hypothesis is true 

given a statistically significant finding, 73 and/or estimation of Bayes factors that 

incorporate the prior probability of association based on characteristics of the disease or 

the specific SNP 74.  

Replication stage 

 An important strategy has been replication of GWA results in independent 

samples to separate the many false-positive associations from the few true-positive 

associations with disease in GWA studies. The consensus criteria for replication is to test 

the SNP reported in the initial study in the same or very similar phenotype and 

population, and demonstration of a similar magnitude of effect and significance (in the 

same genetic model and same direction) for the same SNP and the same allele as the 

initial report 75.
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Fine mapping of disease locus to identify causal variant(s) 

 The causal variant is usually not identified by GWA studies and may be more 

strongly associated (and explain more of the risk) than the marker detected in the initial 

GWA. To generate a comprehensive list of potential causal variants that could explain an 

association signal, resequencing across the entire region of association (at least out to the 

point at which LD has substantially decayed) and confirmatory genotyping efforts is 

generally required 76. Next generation sequencing technologies like SOLiD sequencing or 

Illumina can be used to sequence the region identified to be associated with disease, both 

in depth and breadth, to fully interrogate nearby variants /genes for possible susceptibility 

alleles. 

 Imputation, a statistical method can be used to predict /generate statistically all 

SNPs in HapMap 67,77 or 1000 Genomes Project and can be tested for association 78. 

Numerous methods like Impute 78,79, Mach 80,81, Beagle82 are regularly used to impute 

millions of SNP for association test. Efforts are currently being directed toward 

implementation of novel analytic approaches and testing rare variants for association with 

complex traits using imputed variants from the publicly available 1000 Genomes Project 

77 resequencing data and from direct resequencing of clinical samples.  

 Another method of identifying causal variants in an extended strong LD block is 

to perform fine mapping in populations of different ancestries. The pairwise correlation 

coefficients will not be equally high in all populations .By genotyping all of the 

equivalently associated variants in multiple populations, it is possible that a subset of 

variants may emerge that show a more consistent pattern of association across 



 17 

populations, making these as more likely candidates for being causal. Individuals of 

African ancestry may be particularly helpful because of the lower levels and distinct 

patterns of LD 83,84. 

 Functional annotation of the genome can shed light on mechanisms of the trait’s 

biology. One common approach is to determine whether trait-associated variants cluster 

into groups of specific biological functions more than would be expected by chance, e.g., 

within gene ontology (GO) terms. Large-scale databases integrate various types of data 

from the literature to build pathways, and commercial and public tools exist to facilitate 

access e.g., Ingenuity, Kyoto Encyclopedia of Genes and Genomes (KEGG), ENCODE 

85. Similarly, other data types such as methylation / acetylation, protein–protein 

interactions, and miRNA regulatory networks, can be integrated with GWAS results 85. 

Through integration with annotations and functional genomic data as well as in vitro and 

in vivo experimentation, mapping studies continue to characterize functional variants 

associated with complex traits. 
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Success in GWAS  

 In 2005, the first successful GWA study was of age-related macular degeneration, 

with 100,000 SNPs tested for association in 96 cases and 50 healthy controls 86, followed 

by GWA studies for Crohn's Disease 87, myocardial infarction 88 , inflammatory bowel 

disease 89, and type 2 diabetes 90 . A landmark study by the Wellcome Trust Case Control 

Consortium (2007) (WTCCC) 74 reported successfully the GWAS results for seven 

common diseases, including bipolar disorder, coronary artery disease, Crohn's disease, 

hypertension, rheumatoid arthritis, type I diabetes, and type II diabetes. Several common 

variants influencing continuous traits, such as lipids 91, height 92,93 and fat mass 94,95, have 

also been found. GWA studies have also proven to be successful in identifying more than 

200 mostly common low-penetrance susceptibility loci for a range of different cancer 

types. These included for example breast 96-103, prostate 104-110, lung 111-113, colorectal 114-

120, urinary bladder121,122, pancreatic cancer 123,124, hematological malignancies 125-127, 

gliomas 128 and ovarian cancers 129. Breast cancer and prostate cancer GWAS have been 

at forefront of cancer GWAS with many loci associated with these diseases. As of March, 

2011, 1319 human GWAS at p-value < 5 x 10 -8 have been published on 221 traits. The 

National Institute of Health (NIH) keeps a weekly updated a catalog of published GWAS 

results (http://www.genome.gov/gwastudies) 130. 

 Examples of experimentally confirmed functional variants underlying validated 

GWAS hits are accumulating, revealing a variety of functional mechanisms underlying 

trait variation. For example the IRF5 locus includes variants that disrupt intron splicing, 

decrease mRNA transcript stability, and delete part of the interferon regulating factor 

http://www.genetics.org/content/187/2/367.long#ref-212
http://www.genetics.org/content/187/2/367.long#ref-212
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(IRF) protein  131, all of which together explain the independent associations with 

systemic lupus erythmatosis 132,133, inflammatory bowel disease 134, and rheumatoid 

artheritis 135. Allele-specific chromatin remodeling affecting the expression of several 

genes in the ORMDL3 locus region136 explains its association with asthma 137, Crohn's 

disease 138 and type 1 diabetes 139. At a locus associated with elevated LDL-cholesterol 

levels in the blood and myocardial infarction, a common nonprotein-coding variant was 

found to create a transcription factor binding site that alters the expression of the SORT1 

gene in the liver 140.  

 A striking example of functional data of cancer GWAS SNPs is the noncoding 

variants concentrated within a 1.2 Mb gene desert on chromosome 8q24, where numerous 

studies have reported associations between multiple types of cancer—including prostate, 

colorectal, breast, and urinary bladder. Various groups have studied the 8q24 locus and 

identified two functional SNPs and several transcriptional enhancers. Two of them in a 

prostate cancer risk region were occupied by androgen receptor and a SNP lies within a 

FoxA1 binding site 141. In a separate study a 8q24 SNP in colorectal cancer was found 

situated within a transcriptional enhancer and its activity is affected by the risk SNP 142. 

The risk SNP has been shown to physically interact with the MYC gene with allele-

dependent binding of transcription factor 7-like 2(TCFL2) 142. Researchers demonstrated 

that the 8q24 cancer-associated variant lies within an in vivo prostate enhancer whose 

expression mimics that of the nearby MYC proto-oncogene in mouse model 143. Thus 

GWA results have provided unprecedented views into the contribution of common 

variants to complex traits, illuminated genome function, and have opened new 

possibilities for the development of therapeutic interventions.  
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GWAS challenges 
 

 Although GWA studies have proven successful in identifying regions of the 

genome harboring variants that contribute to complex phenotypes and diseases, several 

challenges have been encountered: 

Power and cost of the GWAS   

The statistical power of a GWAS is a function of its total sample size, effect size, 

causal allele frequency, marker allele frequency and the strength of correlation between 

marker alleles and causal variants. GWA studies need a large number of cases and 

controls to be genotyped to attain power to identify genetic variants with small effect 

sizes. To address this problem, many groups have joined efforts to create large consortia 

with DNA samples from thousands or tens of thousands of individuals to conduct studies 

that are well powered to detect even a modest genetic effect.  Even with large consortia, 

however, the cost of genotyping such a large number of samples can be prohibitive. 

When the genotyping is performed across various institutions and later combined, 

technical errors and batch effects may be introduced.  In 2007, the Wellcome Trust Case 

Control Consortium (WTCCC)74 used the "shared controls" approach to study seven 

common diseases. Rather than using controls individually matched to the cases for each 

disease, the WTCCC genotyped a common set of controls representative of the self-

identified white European population of Great Britain and compared allele frequencies 

from this group with each set of case individuals. This approach has increased the power 

of GWAS in a cost effective manner. 
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 Population Stratification 

 Confounding due to population stratification (also called population structure) has 

been cited as a major threat to the validity of genetic association studies. The presence of 

population stratification (PS)—allele frequency differences between cases and controls 

due to systematic ancestry differences—can lead to greater than nominal type I error rate. 

Differences in the origin of populations of cases and controls can arise if the two groups 

are recruited independently or have different inclusion criteria.  Population structure can 

be assessed in GWA studies by examining the distribution of test statistics generated 

from the thousands of association tests performed (eg, the χ2 test) and assessing their 

deviation from the null distribution (that are expected under the null hypothesis of no 

SNP associated with the trait) in a quantile-quantile or “Q-Q” plot. The extent and impact 

of PS on case-control association studies in practice, particularly in GWAS, can now be 

thoroughly investigated by a strategy that leverages the fact that in the context of GWAS, 

the vast majority of the SNPs are not associated with the trait under study and therefore 

can be used to infer ancestry and evaluate/adjust for PS. One popular type of method e.g. 

EIGENSTRAT144 constructs principal components (PCs) on the genotype data and infer a 

continuous axis of genetic disparity. Afterwards, GWAS tests are corrected by adjusting 

simultaneously for top-ranked PCs. 

Insensitivity to rare variants  

 Evaluation of the contribution of rare variants to common disease susceptibility 

raises issues related to detection and functional assessment. The rare variants are poorly 
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captured by the standard GWA SNP chip arrays and the sheer number of such variants 

has the limited power to test them for association.  

Environmental exposure and other non-genetic factors 

 There is a need for improved methods to estimate the joint effects of multiple 

genes (G) and/or environmental exposures (E) on disease predisposition. Such analyses 

raise both computational, statistical and study design issues, related to the scale and 

complexity of the data and the large number of hypotheses that could be addressed. Most 

GWASs have not investigated G × E, primarily due to lack of data on environmental 

exposures. 

Source of heterogeneity 

 The interpretation of a failure to replicate GWA results is difficult. If it is clear 

that the replication studies were well powered and well performed, and that there is 

genuine divergence between the effect-size estimates, then the possible explanation can 

be attributed to some source of heterogeneity. The list of potential causes of 

heterogeneity is long: it includes variable patterns of LD between the genotyped SNP and 

untyped causal alleles (although this is unlikely if the samples are of similar ancestry); 

differences in the distribution, frequency or effect size of the causal alleles at a given 

locus (due to, for example, differences in case ascertainment); and the impact of non-

additive interactions with other genetic variants or environmental exposures. 
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Missing heritability 

 For most traits or complex disease studies in GWA study, the effects of all 

associated loci account for a small proportion of the estimated heritability. With the 

exception of age-related macular degeneration and type 1 diabetes, for which collectively 

the proportion of heritability explained to date is approximately 50% and 80% 86,139, 

respectively, most complex disease variants identified to date together account for much 

less of the trait variance. However, these loci in combination typically explain only a 

fraction of the inherited contribution to risk, raising the question of how best to find the 

variation responsible for the remainder.  

Poorly understood genotype –phenotype mechanism 

 For most associated loci, there is substantial ignorance regarding the mechanisms 

by which genetic variation could influence phenotype: the identity of the gene(s) affected 

by the susceptibility variant(s) at each locus is often uncertain, and the mechanisms by 

which the causal variants (also often unknown) influence phenotype is usually unclear. 

This lack of knowledge is a substantial impediment to the understanding needed to make 

progress towards new therapies or preventive measures. This obstacle highlights the need 

to pinpoint the causal variants and the genes affected by those variants, as well as for 

informative functional and computational studies to move from gene identification to 

possible mechanisms that could guide translational progress. 
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 Evolutionary model for disease the susceptibility locus 
 

 To explain the evolutionary framework of disease susceptibility locus, discovered 

by linkage studies or GWAS, there are two models: 1) Mutation-selection-balance model 

and 2) Ancestral susceptibility model.    

 Mendelian traits are controlled by genes of large effect and show simple patterns 

of inheritance within families. They are usually caused by rare strongly deleterious and 

new mutations. The new mutations, usually referred to as ‘derived’ alleles, can be 

inferred by comparing the allele observed at any given human polymorphic site with its 

orthologous nucleotide position in a close outgroup species (e.g. the chimpanzee).  The 

mutation-selection-balance model can explain such disease causing variants in which 

disease alleles are continuously generated by new mutation and eliminated by purifying 

selection. This framework has been also used to model the genetic risk to common 

diseases based on the observation that most common diseases have a late age of onset. 

Thus, mutation-selection-balance model for common disease suggests that disease 

variants are derived (new mutation) and slightly deleterious 53,145,146. At such loci, the 

total frequency of susceptibility mutations may be quite high, and there is likely to be 

extensive allelic heterogeneity at many of these loci due to weak purifying selection 

acting on these loci. The reason that weak purifying selection increases polymorphism is 

that it greatly reduces the probability that susceptibility alleles will be at or near fixation. 

The situation is different when the susceptibility alleles are very deleterious—as seen at 

Mendelian disease loci—in which case, selection dominates the effects of mutation 

pressure and drift and keeps susceptibility alleles at low frequency. For association or 
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linkage-disequilibrium mapping, it is important to know about the frequencies and ages 

of individual mutations within the susceptible class. Thus the genetic variation at disease-

susceptibility loci may possibly be determined by taking into account the evolutionary 

processes such as mutation, genetic drift, and the possibility of selection.  

 The second evolutionary framework to explain disease-susceptibility locus was 

proposed by Di Rienzo A and Hudson RR in 2005 147. They observed that unlike rare 

Mendelian diseases, which are due to new mutations (i.e. derived alleles), several alleles 

that increase the risk to common diseases are ancestral alleles, whereas the derived alleles 

are protective. Examples include variants involved in biological processes such as energy 

metabolism and sodium homeostasis. The ε4 allele of the gene encoding Apolipoprotein 

E (APOE), which increases the risk to coronary artery disease 148,149 and Alzheimer's 

disease 65,150 carries the ancestral allele at two common amino acid polymorphisms. 

These observations can be explained in which ancestral alleles reflect ancient adaptations 

to the lifestyle of ancient human populations, whereas the derived alleles were deleterious 

151. However, with the shift in environment and lifestyle, the ancestral alleles now 

increase the risk of common diseases in modern populations.

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Di%20Rienzo%20A%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Hudson%20RR%2522%255BAuthor%255D
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Introduction to my thesis project  

 The goal of my thesis project was to understand germline genetics of MPN using 

GWA study followed by fine mapping of the MPN susceptibility locus. As discussed 

earlier in this section, MPN shows remarkable molecular heterogeneity and the etiology 

of this disease remains unclear. The story of MPN pathogenesis started with the 

discovery of the JAK2V617F mutation14-17; followed by identification of many other 

mutations of MPN some involving JAK-STAT signaling activation, others chromatin 

remodeling and others still leukemic transformation. A role for inherited genetic factors 

in the etiology of MPNs has also been suggested from smaller case studies showing 

evidence of familial clustering of PV, ET, MF, and chronic myeloid leukemia (CML) as 

well as in largest population-based case-control study. The central hypothesis of this 

project is that there are common, strong, shared germline susceptibility loci that 

predispose to all three MPN - PV, ET and PMF. To test our hypothesis, we performed 

GWA study of patients diagnosed with MPN. Given that our MPN dataset lacks genotype 

data for healthy controls, we used a “shared control approach” in our GWA study. The 

shared controls are a group of healthy individuals that can be used as controls in GWA 

studies of different diseases. The shared controls approach was first used by the 

Wellcome Trust Case-Control Consortium (WTCCC) study74. We developed a systematic 

method to match genetically diverse cases with controls from public database instead of 

using matched control study design. Thus, my thesis work capitalizes on the concept of 

shared controls in GWA studies and established methodologies for analyzing cases with 

shared controls in GWA study to identify the germline variant in JAK2 gene associated 

with MPN. We studied the JAK2 susceptibility locus using phylogenetic analysis tools. 
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Fine mapping of the MPN disease locus was done using imputation and next generation 

technologies, and we identified candidate functional variant(s) that may play an important 

role in the etiology of MPN.  

 
I have organized my findings into the following chapters: 

 

CHAPTER 1: Using additional controls from public database to increase power of 

GWAS 

We developed a pipeline to match genetically diverse cases with shared controls 

on the basis of their genetic variation. We used analytical methods to calculate the 

optimum number of cases and controls. To determine the type I error rate and 

power of the method, a whole genome simulation study was used. As proof of 

principle, we used a pancreatic cancer dataset to test the power of this method. 

 

 
CHAPTER 2: Identification of genetic variant(s) associated with MPN predisposition 

 

The GWA study was performed comparing MPN patients with controls from 

public database. We identified the genetic variant rs10974944, SNP located in 

JAK2 gene to be associated with MPN predisposition. The MPN associated 

haplotype is known as the 46/1 haplotype.  
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CHAPTER 3: Mechanism for JAK2 susceptibility haplotype in MPN 

  

We explored the two suggested hypotheses – the hyper-mutability hypothesis or 

the activation hypothesis to explain the mechanism of the well-established finding 

that the 46/1 JAK2 haplotype predisposes to JAK2V617F positive MPN. We used 

targeted sequencing and fine mapping to understand the role of 46/1 susceptibility 

haplotype in predisposition to MPN.  

 

 

CHAPTER 4: Evolutionary framework of JAK2 susceptibility locus 

   

We investigated the JAK2 haplotype that is associated with MPN using 

Haploview and reconstructed the phylogenetic tree using chimpanzee as outgroup 

to understand the relationship of various halotypes present in the JAK2 locus. 

Even though there is no evidence of recent positive selection at the JAK2 locus, 

we observed an excess of derived alleles at the JAK2 locus. We concluded that 

the JAK2 susceptibility locus exhibits the ancestral-susceptibility model. 
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CHAPTER 1 

Using addition controls from public databases to increase power of GWAS 

 
1.1 Introduction  

 

A typical GWA study involves a case-control design in which the investigator 

analyzes DNA samples from both affected case individuals and matched, healthy control 

individuals.  One hurdle in conducting such studies, in which hundreds of thousands of 

SNPs are independently tested for association with disease, is the large sample size 

required to obtain adequate power to detect a modest effect after correcting for multiple 

testing.  To address this problem, many groups have joined efforts to create large 

consortia with DNA samples from thousands or tens of thousands of individuals to 

conduct studies that are well powered to detect even a modest genetic effect.  Even with 

large consortia, however, the cost of genotyping such a large number of samples can be 

prohibitive. 

 

One potential solution to the sample size requirement of GWAS that has been 

proposed is the use of a common set of control individuals in numerous studies.  In 2007, 

the Welcome Trust Case Control Consortium (WTCCC) used this "shared controls" 

approach to study seven common diseases 74. This approach has been used by others with 

case individuals who come from both the UK and elsewhere, including the United 

States74,125,128,152,153.  Recently Zhuang et al. reported a simulation study in which they 

showed the theoretical potential for expanding the control group with publicly available 
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disease or reference samples to increase the power of GWAS 154; we refer to the use of 

such controls from the database as "additional or shared controls."   

 

Despite the apparent practical success of this approach and simulation studies 

suggesting its effectiveness, both the power and pitfalls of using additional controls from 

databases in the genetically heterogeneous United States population remains unclear.  

Genome-wide genotype information, along with limited phenotypic data, is available for 

numerous healthy individuals from the U.S. in the dbGaP database at NIH.  Therefore, in 

theory it should be possible to combine these data with genome-wide SNP profiles from a 

smaller number of cases that an individual investigator is studying to identify disease 

susceptibility loci.  However, population stratification due to differences in genetic 

ancestry between people in such case and control groups and differential genotyping error 

from different sources could hinder effective use of this approach.  It is known that even 

if a study is restricted to self-identified "white" individuals in the United States, genotype 

frequency at many loci can vary based on from where in Europe ancestors came 155,156.  

While a variety of statistical methods have been developed to identify and correct for 

such stratification 144,157, how such correction will influence the power and type I error 

rate of using common controls in US-based studies remains to be seen. 

 

In this chapter we evaluate the use of additional controls from publicly available 

sources in a U.S.-based GWAS.  To do so, we utilize a small pancreatic cancer dataset for 

which we have genome-wide genotype data on 263 cases and 202 controls. We chose this 

dataset in part because four recently reported pancreatic cancer associated SNPs could be 
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used as true positives to estimate the power of this additional control approach in a real 

setting 123,124.  We found that the rank and p-value of these true disease SNPs improved 

significantly in our data set with additional controls, with the added benefit of more 

controls reaching a plateau after a control: case ratio of 10:1 is obtained.  Despite a large 

amount of population stratification in this joint dataset, the impact of this stratification 

was effectively captured and corrected by principal component analysis (PCA). We 

demonstrate the utility of genotyping some controls at the same time as cases for 

comparison with the additional controls to remove SNPs that show differential allele 

frequencies due to disparity in data processing and technical artifacts.  We thus show 

systematically for the first time the practical issues that concern the use of controls from 

different sources.  This report can serve as useful guidance when using additional 

controls from publicly available datasets in future studies. 
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1.2 Subjects and Methods 
 

Ethics Statement 
 

 The study was approved by the MSKCC Institutional Review Board and all 

participants signed informed consent.  

 
Analytical power calculation 
 

 We determined the analytical power of GWAS assuming a simple test of allelic 

association.  We computed the power using a non-central χ2 distribution with non-

centrality parameter λ 158.  The power was computed under an additive model with the 

significance threshold α=1x10-7.  The genotype relative risk (GRR) was varied from 1.0-

3.0 with increments of 0.1 and the disease allele frequency (DAF) was varied from 0.05 

to 0.50.  The number of cases used range from 100 to 3000, and the control:case ratio 

ranged from 1:1-50:1. 

 

Simulation study for empirical power and type I error rate calculations 
 

 The simulated genotype data for cases and controls were generated using 

GWASimulator 159. The GWAsimulator uses moving window algorithm to generate 

whole genome data based on a set of phased input data. As an input data, we used 

HapMap 57 individuals from European ancestry Utah residents with Northern and 

Western European ancestry from the CEPH collection (CEU) and Toscan from Italy 
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(TSI) phased data from HapMap3. Total of 500 cases and 5000 controls were simulated 

to generation ratio of case: control as 1:10.  The ratio of CEU to TSI in cases alone was 

set to 4:1. The simulated population based controls were generated separately such that 

the ratio of CEU: TSI controls were either 4:1 (No Stratification) or 99:1 (creating strong 

population stratification in the dataset).  We used 300K Illumina SNP chip markers 

excluding markers in chromosome X to obtain the simulated genotype data. Disease 

SNPs were chosen with genotype relative risk 1.6 and of disease prevalence 0.05. Three 

categories of disease loci were chosen -1) Markers with same minor allele frequency in 

the two input reference population called as undifferentiated markers, 2) Markers with 

minor allele frequency in CEU was greater than TSI such that the difference is 0.15 

called as CEU high markers and 3) markers with minor allele frequency in TSI was 

greater CEU and difference between MAF in TSI and CEU was 0.15 called as TSI high 

markers. The category 2 and 3 were differentiated SNPs. 1000 markers from each 

category were generated as disease locus generating 100 simulated files for each type.  

 

 To correct for population stratification, we used principle component analysis 

method (Eigenstrat). The independent set of markers were obtained by using LD based 

SNP pruning. We used r2 threshold of 0.05 to obtain 30,000 makers that were 

independent of each other. Using this reduce set of independent markers, PCA was 

calculated and top two PCs were used as covariates in the logistic regression model. The 

marker that have p-value less than genome wide nominal value of 1e-07 were considered 

to be genome wide successful. If the simulated disease locus has p-value less than the 

global significant threshold, it was considered ‘success’. We computed power as the 
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number of times the simulated disease locus was considered as success hit out in 100 

iterations. The markers that had p-value less than significant threshold and were not in 

LD with simulated disease locus were false positive. To determine the type I error rate, 

the average number of false positive was calculated divided by the total number of 

markers (240,000).  We compared the power and type I error rate with or without PCA 

corrected method in our simulations. 

 
Pancreatic cancer study samples and genotyping 
 

 The pancreatic cancer study dataset was obtained from an ongoing hospital based 

case-control study conducted in conjunction with the Familial Pancreatic Tumor Registry 

(FPTR) at Memorial Sloan-Kettering Cancer Center (MSKCC). Patients were eligible if 

they were age 21 or over, spoke English, and had pathologically or cytologically 

confirmed adenocarcinoma of the pancreas. Patients were recruited from the surgical and 

medical oncology clinics at MSKCC when seen for initial diagnosis or follow-up.  

Controls were visitors accompanying patients with other diseases to MSKCC or spouses 

of patients.  They had the same age and language eligibility requirements as the cases and 

were not eligible if they had a personal history of cancer (except for non-melanoma skin 

cancer).  The 263 cases and 202 controls in this analysis were recruited between June 

2003 and July 2009.  The participation rate among approached and eligible individuals 

was 76% among cases and 56% among controls. Participants provided a blood or buccal 

(mouthwash or saliva) sample for DNA and completed risk factor and family history 

questionnaires administered by the research study assistant by telephone or in person.  
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Genomic DNA was isolated from buccal cells using the Puregene DNA purification 

kit (Qiagen, Inc; Valencia CA). DNA was also isolated from saliva samples with the 

Oragene saliva kits (DNA Genotek; Kanata, Ontario, Canada) or from blood using Gentra 

Puregene blood kit (Qiagen Inc; Valencia CA). DNA samples were hydrated in 1x TE 

buffer.  Genomic DNA was genotyped on the Illumina 370K SNP chip (either the 

Illumina CNV370-Duo or Illumina CNV370-Quad) at the Genomics Core Laboratory of 

MSKCC according to the manufacturer's protocol.   

 
Additional controls from dbGaP 
 

 Genotypes from additional controls were obtained from the NIH's Database of 

Genotypes and Phenotypes (dbGaP).  All individuals used are controls in the underlying 

study and are of European ancestry.  Specifically, data from six studies in dbGaP 

genotyped using Illumina chips were used (Table 1). These data sets provide 5485 

additional controls total. Using a common set of markers present in all the datasets, we 

combined our MSKCC cases and controls with some or all of the additional controls to 

yield control: case ratios of 5:1, 10:1 or 20:1.  

 
Data processing and quality control 
 

 All genotype data was processed using PLINK 69.  We performed several steps of 

quality control (QC).  First, we processed the MSKCC samples alone, without additional 

controls.  As we could not be certain of the DNA strand the genotype calls from each 

study are in reference to, we removed all A/T and C/G SNPs, as strand could be confused 
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for these allele pairs.  We removed individuals for whom less than 90% of genotypes 

were called and SNPs for which less than 10% of genotypes were called.  We also 

removed SNPs with a minor allele frequency <5%, or were out of Hardy-Weinberg 

equilibrium in controls (p<1x10-7). A total of 314,664 markers passed the QC in the 

MSKCC data and were used for combining data from various sources. Similar quality 

control steps with the same parameters were performed on each of the additional control 

datasets independently. The data sets were then merged using PLINK, restricting analysis 

to a set of SNPs common to all datasets.  We calculated genome-wide identity by descent 

(IBD) using PLINK (--genome) and 70 individuals with excessive IBD (π-hat > 0.4) were 

removed from our analysis. After these steps, we applied the same thresholds for missing 

data, minor allele frequency, and Hardy-Weinberg equilibrium as before. We also 

removed 529 SNPs that showed a significant difference in rates of missing genotype calls 

between cases and controls (p<1x10-7) and a further 723 markers that show differential 

missingness (p<1x10-7) between males and females.  A test for differences in missingness 

based on local haplotype also did not reveal any SNPs with strong evidence for 

differential missingness based on inferred genotype at the SNP (--test-mishap in PLINK; 

p<1x10-7).  We compared allele frequencies and call rates between MSKCC study 

samples obtained from different DNA sources (buccal, saliva, or blood) and did not find 

any markers showing different missingness rates or genotype frequencies due to 

difference in DNA source (p<1x10-7).    
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Principal components analysis  
 

 To perform principal components analysis to adjust for population substructure, 

we used the EIGENSTRAT software from the EIGENSOFT 2.0 package 144.  We first 

filtered the data by removing markers in high linkage disequilibrium (LD).  This gave us 

a set of 32,619 SNPs for which pairwise r2 values within a window of 50 SNPs are all 

less than a specified threshold (usually 0.1; --indep-pairwise 50 5 0.1 command in 

PLINK).  This set of markers was then used as input for EIGENSTRAT.  Principal 

components were computed and outliers removed using default parameters. Significant 

principal components were determined using the Tracy-Widom statistic (p<0.05). 

 
Additional quality control by control group comparisons  
 

 To perform additional QC to reduce false positive findings, we tested for 

genotype frequency differences between each control group versus the rest of the 

controls.  For each control group, we adjusted for the top 11 principal components and 

used logistic regression to test for differences in genotype frequency versus the other 

control groups.  For the MSKCC controls, we identified 2702 SNPs that show a 

significant difference in genotype frequencies (p<0.01; Supplementary Figure 1); these 

SNPs were removed from further analysis.  For the other control groups, we identified an 

additional 15 SNPs that showed significant deviation in genotype frequency in at least 

one control group (p<1x10-7; Supplementary Figure 1).  Notably, we found that the 211 

controls from the Study of Irish Amyotrophic Lateral Sclerosis (SIALS; phs000127v1) 

show a strong deviation from the null hypothesis on a quantile-quantile plot. Therefore, 
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we chose to remove these 211 controls from the final analysis.  This resulted in a final 

dataset of 263 cases and 5416 total controls at 267,109 markers.  

 

Association analysis and estimation of λ 
 

 To test for association between disease phenotype and SNPs, we used logistic 

regression, as implemented in PLINK.  When we do not consider population 

substructure, logistic regression is used without covariate adjustment; otherwise, 

significant principal components were used as covariates to adjust for population 

substructure.  

We used PLINK's estimate for the genomic control parameter λ, which is a measure 

of test statistic inflation due to effects such as population stratification. PLINK reports λ 

(based on median χ2) in the .log file.   To test control:case ratios of 1:1, 5:1, 10:1, and 

20:1, we selected appropriate subsets of the additional controls to add to the MSKCC 

case/control dataset. 

 
TaqMan genotyping assay 
 

 All MSKCC DNA samples were first amplified using the Illustra GenomiPhi v2 

DNA Amplification Kit (GE Healthcare), following manufacturer's recommendations.  

The reaction was then diluted by adding 120 µL of reduced TE buffer.  Prior to use in 

genotyping, we performed an additional 2-fold dilution to improve assay performance.  

One SNP, rs2236479, was genotyped using the TaqMan allelic discrimination genotyping 

assay (Applied Biosystems).  Genotyping was conducted according to the manufacturer’s 
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instructions as follows: A master mix consisting of 1.375 µL water, 2.5 µL 2X TaqMan 

master mix, and 0.125 µL SNP assay (probe + primers) for each individual was prepared.  

4 µL were aliquoted into each well of a 384 well plate, and 1 µL of amplified and diluted 

DNA was added.  PCR was performed in an ABI Gene Amp 9700 machine under the 

following conditions: 95°C for 10 min followed by 48 cycles of 92°C for 15 s and 60°C 

for 1 min. Plates were read on an ABI Prism 7900HT fast real time PCR system, and 

genotype calling was performed using the ABI Sequence Detection System software 

version 2.3.  The genotype concordance rate was computed using 346 individuals who 

were genotyped both with TaqMan and on the Illumina arrays. 
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1.3 Results  

 

Analytical power  
 

 The large number of control individuals currently available in dbGaP and other 

databases raises the question of limiting returns.  In other words, at what point is the 

improved power obtained through additional controls small enough that it is no longer 

worth adding controls?  We therefore investigated the shape of the curve of power as a 

function of control: case ratio with a constant number of cases.  As expected, the power 

increases with increasing number of cases, genotype relative risk and disease allele 

frequency. The maximum power is achieved when the control: case ratio increases to 

10:1; beyond that, the power plateaus (Figure 1).  For example, at a genotype relative risk 

of 1.6, a disease allele frequency of 20%, and significance level of 10-7, little increase in 

power is observed after a control: case ratio of 10:1.  Therefore, we consider a 10:1 

control: case ratio ideal for using additional controls in a GWAS. 
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Figure 1 Analytical power of GWAS 
All power calculations assume an additive model and significance level of 
α=1x10-7. The power computed using genotype relative risk (GRR) of 1.2, 1.4, 
1.6 and disease allele frequency (DAF) of 0.1, 0.2, and 0.4 were plotted.  
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Power and type I error rate from simulation studies 
 

 The simulated genotype data for cases and controls were generated using 

GWASimulator 159 using HapMap individual from European ancestry CEU and TSI 

phased data from HapMap3 57. Total of 500 cases and 5000 controls were simulated to 

generation ratio of case: control as 1:10 with no stratification or strong population 

stratification as described in method. The power and type I error rate were computed for 

the three categories of disease loci -1) undifferentiated markers, 2) CEU high markers 

and 3) TSI high markers as describe in method. In Table 1 for 500 cases and 500 controls 

with no population stratification, there was very low power (0.34) with nominal error 

rate. When ratio of case: control was increased to 1:10 ratio, the power increased from 

0.34 to 0.87. The presence of population stratification caused an increase in type I error 

rate that could be successfully corrected by PCA based correction method as described in 

methods, even though type I error rate did not reach the level when no population 

stratification exist. Thus, our simulation studies motivated our desire to combine 

genotype data of healthy individuals from public database as common controls with data 

from case individuals ascertained at Memorial Sloan-Kettering Cancer Center in New 

York.  
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Table 1 Empirical power using GWA simulation study 
The empirical power calculation based on simulated cases and controls using 
GWAsimulator. The population stratification was created by using CEU and TSI 
HapMap 3 phased data as input to GWAsimulator. 

 
 

 

Undifferentiated SNPs - with same minor allele frequencies in CEU and TSI population

Case- controls parameter Ancestral difference level Satistical Method Power Type I error rate

500 cases and 500 controls (1:1) No Stratification Association 0.39 6.90E-06

500 cases and 5000 controls (1:10 No stratification  Association 0.87 1.28E-03
(CEU : TSI controls = 4:1) 

PCA corrected Logistic regressio 0.8 1.10E-03

500 cases and 5000 controls (1:10 Population Stratification Association 0.89 1.23E-01
(CEU : TSI controls = 99:1) 

PCA corrected Logistic regressio 0.79 1.00E-03

CEU high SNPs - SNPs with minor allele frequencies in CEU is higher than TSI 

Case- controls parameter Ancestral difference level Satistical Method Power Type I error rate

500 cases and 500 controls (1:1) No Stratification Association 0.29 4.88E-06

500 cases and 5000 controls (1:10 No stratification  Association 0.586 1.26E-03
(CEU : TSI controls = 4:1) 

PCA corrected Logistic regressio 0.58 1.10E-03

500 cases and 5000 controls (1:10 Population Stratification Association 0.62 1.23E-01
(CEU : TSI controls = 99:1) 

PCA corrected Logistic regressio 0.55 9.70E-04

TSI high SNPs - SNPs with minor allele frequencies in TSI is higher than CEU

Case- controls parameter Ancestral difference level Satistical Method Power Type I error rate

500 cases and 500 controls (1:1) No Stratification Association 0.23 4.36E-06

500 cases and 5000 controls (1:10 No stratification  Association 0.97 1.43E-03
(CEU : TSI controls = 4:1) 

PCA corrected Logistic regressio 0.9 1.20E-03

500 cases and 5000 controls (1:10 Population Stratification Association 0.98 1.23E-01
(CEU : TSI controls = 99:1) 

PCA corrected Logistic regressio 0.87 1.00E-03
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Population stratification in New York based data  
 

 We were concerned that population stratification could become a significant 

problem in a study with controls from public data source, even if we restrict our analysis 

to self-identified "white" individuals, because of subtle genetic differences among 

different European populations156,160,161.  The history of immigration to the United States 

suggests that a larger proportion of white Americans of Ashkenazi Jewish or southern 

European (e.g. Italian) ancestry would be found in the New York metropolitan area 

compared to the country as a whole.  If this were the case, combining additional controls 

with our New York-based population would result in the detection of alleles that mark 

geographic ancestry within Europe rather than disease risk.  To investigate whether this 

concern was well-founded, we performed principal component analysis (PCA) on 263 

cases and 202 controls from the MSKCC pancreatic cancer study combined with 5416 

individuals selected as additional controls from 6 different studies available in dbGaP 

(Table 2).  When we examine the first and third principal components in our samples 

from New York, we observe many individuals along a single gradient which has been 

previously suggested to represent a cline extending from northwest to southeast Europe 

162 (Figure 2).  The separate cluster of individuals has been previously suggested to be 

individuals of Ashkenazi Jewish ancestry; all participants in our study who self-identified 

as Ashkenazi Jewish cluster in this group, supporting the contention that this cluster 

represents the Ashkenazi Jewish population (Figure 2).  When we compared this PCA 

plot with one for the controls from dbGaP, we observe marked differences in the 

distribution of individuals on the plot, suggesting a different distribution of geographic 
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ancestry within Europe. Notably, 18% of the individuals in our study cluster in the 

“Ashkenazi Jewish” group, compared with 1.7% in the dbGaP control group.  These 

differences could potentially lead to high test statistic inflation when cases and additional 

controls are analyzed together. Therefore, we conclude that population stratification may 

be a serious issue when using additional controls with a New York-based case dataset and 

must be addressed. 
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Table 2 Controls from dbGaP used in the present study 
 

Abbreviation Study Number of controls
dbGaP accession 

number Reference

SAGE Study of Addiction: 
Genetics and 
Environment 

1285 phs000092v1

CGEMS Breast 
Cancer

CGEMS Breast Cancer 
GWAS - Stage 1 - 
NHS 

1142 phs000147v1 98

CGEMS Prostate 
Cancer

CGEMS Prostate 
Cancer GWAS - Stage 
1 - PLCO 

1148 phs000207v1 104

CIDR PD CIDR: Genome Wide 
Association Study in 
Familial Parkinson 
Disease  

863 phs000126v1

SIALS Study of Irish 
Amyotrophic Lateral 
Sclerosis 

211 phs000127v1 [26]

A Genome Wide 
Scan of Lung Cancer 
and Smoking 

A Genome Wide Scan 
of Lung Cancer and 
Smoking 

844 phs000093v2 163
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Figure 2 Population substructure of MSKCC pancreatic cancer cases and additional 
controls 
 
Principal components were computed for the MSKCC and additional control samples combined, 
and plotted separately.  (A, C) Principal components of the 263 cases and 202 controls from the 
MSKCC (New York) pancreatic cancer study.  The first principal component is plotted against 
the second (A) or third (C).  Individuals in red self-identified as Ashkenazi Jewish in the study 
questionnaire.  (B, D) Principal components of the additional controls from dbGaP.  The first 
principal component is plotted against the second (B) and third (D) principal components.   
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PCA based correction method using additional controls 

We next asked if stratification between our New York-based case dataset and 

controls from dbGaP results in false positives and if PCA can properly correct for it. We 

limited the data to those SNPs in common among all studies.  As all studies were 

conducted using the Illumina platform, there were 272,796 overlapping SNPs.  The full 

dataset results in a control:case ratio of 20:1, twice as much as we would recommend 

based on the analytical power calculations.  Using an independent set of markers (all 

pairwise LD r2 < 0.1), we determined the significant principal components using 

EIGENSTRAT 144.  The top principal components were used as covariates in a logistic 

regression model.  As can be seen on the quantile-quantile plot, there is an immense 

inflation of the test statistic when we do not correct for population structure; we interpret 

this to be due to stratification rather than any true positive finding (Figure 3).  When we 

correct for population structure by adjusting for the top 21 eigenvectors, the quantile-

quantile plot follows the distribution expected for the null hypothesis much more closely 

(Figure 3), even though there is a little inflation near the tail. Therefore simple adjustment 

for principal components can largely correct for population stratification introduced when 

using additional controls.  
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Figure 3 Quantile -quantile plot of GWAS of pancreatic cancer cases with additional 
controls 

At a 20:1 control:case ratio, this plot compares the association statistics without any 
population stratification correction (green), after correction with principal components 
analysis (red), or with both PCA and removal of SNPs that show differences between the 
MSKCC controls and additional controls (blue).  The black line shows the expected result 
under the null hypothesis of no association. 
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Additional quality control through comparison of control groups  
 
 The presence of six SNPs at the genome-wide significance threshold of 10-7 

concerned us as such highly significant associations should have been found in the 

previously reported pancreatic cancer GWAS. When we examined the previously 

reported GWAS of pancreatic cancer in dbGaP, none of these six SNPs were significant 

(all p>0.05) (Table 3).  This failure to replicate raises the possibility that the significant 

results in our study may represent false positives even after following QC steps used in 

regular case-control GWAS. We next asked if SNPs that lead to false positives could be 

detected by comparing the MSKCC controls with the additional controls from dbGaP 

using logistic regression.  The quantile-quantile plot of this comparison shows no 

inflation of test statistics when correcting for 11 principal components (genomic inflation 

factor λ = 1.01).  Five out of six potential false positive SNPs showed a nominally 

significant difference (p<0.01) in allele frequency between control groups (Table 3).  We 

then examined the normalized intensity plots for the sixth SNP, rs1975920, in the data we 

generated (Figure 4).  While the plot shows distinct clusters, we noticed that this SNP 

was monomorphic in the samples we genotyped on the Illumina CNV370-Quad array, 

while it was polymorphic in the larger number of samples genotyped using the Illumina 

CNV370-Duo array.  As only 20 controls were genotyped using the Illumina CNV370-

Quad array, we were not able to detect this artifact through the control group comparison.  

However, 84 out of 263 cases were genotyped on the CNV370-Quad, presumably driving 

the signal seen in the case-control analysis.  Thus, we introduce an additional QC step by 

removing 2863 SNPs that show significant difference (p< 0.01) in allele frequencies 

between MSKCC controls group and additional controls. We extended this analysis to the 



 51 

other control groups, comparing each group with all other control groups.  We excluded 

15 markers with significant differences in genotype frequency (p<1x10-7).  We also 

visually inspected the quantile-quantile plot of each test for excess test statistic inflation. 

Notably, we found that the 211 controls from the Study of Irish Amyotrophic Lateral 

Sclerosis (SIALS; phs000127v1) show deviation from the null hypothesis in the Q-Q 

plot.  Thus, we removed these 211 controls from the final analysis.  We reanalyzed 263 

pancreatic cancer cases with 5416 additional controls after performing this additional QC 

step and found that most of the SNPs with extremely low p-value were removed except 

one (rs2236479).  We genotyped rs2236479 in our cohort using a different technology 

(TaqMan).  The concordance rate between the two technologies (TaqMan and Illumina) 

for rs2236479 was 85%, suggesting that false positives may still be present due to 

genotyping error. Therefore, we conclude that careful quality control by using a small 

control group genotyped simultaneously with cases can effectively reduce false positive 

findings when using additional controls by identifying SNPs that show different genotype 

frequencies between control groups.  
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Table 3 SNPs associated with pancreatic cancer 
SNPs associated with pancreatic cancer at genome-wide significance (p<1x10-7) before 
additional quality control.  All additional controls (control:case = 20:1) were used. 
Differential missingness is measured by a test for differences in the missing data frequency 
between the two groups (p-value). The PanScan analysis p-value is obtained from published 
data.  The control versus control analysis compared MSKCC controls with additional 
controls, correcting for population structure.   Chr.=Chromosome. 
 

SNP Chr.

Analysis 
using 

additional 
controls (p )

Differential 
missingness 

(p )
PanScan 

analysis (p)

Additional 
controls vs.  

MSKCC 
controls (p )

rs7503953 17 2.7x10-12 7.8x10-5 0.5273 8.2x10-5

rs2236479 21 8.9x10-23 0.08729 0.7827 0.003

rs1975920 12 1x10-10 0.448 0.5081 0.55

rs1455311 4 1.3x10-32 1 0.2184 3.5x10-15

rs1810636 20 3.4x10-17 1 0.4524 1.5x10-5

rs1447826 3 1.1x10-16 1 0.2049 0.0014
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Figure 4 Normalized signal intensity plot for rs1975920 
The normalized signal intensity for different SNP chips (Illumina CNV370-duo and 
CNV370-quad) used in our study 
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Effect of data source on inflation factor 
 

 We next analyzed how test statistic inflation is influenced by the number and 

choice of sets of additional controls.  We used the genomic control parameter λ as an 

estimate of the test statistic inflation163.  We measured λ in both the original case-control 

dataset (no additional controls) and with the addition of various additional controls from 

dbGaP.  We observe that λ is near 1 when no additional controls are used (Table 4), 

indicative of no test statistic inflation.  As the control:case ratio is increased by adding 

data from different sources, λ increases, suggesting the existence of population 

stratification and/or other technical artifacts.  In this analysis, λ is maximal at 1.81 when 

data from all six different studies are added for a control:case ratio of 20:1 (Table 4).  

When all significant principal components from PCA were used to correct for population 

stratification, λ reduces to nearly 1 (range 1.01-1.03; Table 4).  Thus, as expected from 

our quantile-quantile plot analysis, PCA based correction can properly account for the 

population stratification that results when using additional controls.  
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Table 4 Genomic inflation factor for analysis with various datasets 
 

Without 
PCA 

Correction

With PCA 
Correction

1:01
MSKCC pancreatic cancer study 
controls 202 3 1.009 1.005

5:01
SAGE , MSKCC pancreatic cancer 
study controls 1488 5 1.5 1.014

5:01
CGEMS Breast Cancer, MSKCC 
pancreatic cancer study controls 1344 6 1.52 1.018

5:01
CGEMS Prostate Cancer, MSKCC 
pancreatic cancer study controls 1350 5 1.64 1.019

5:01
CIDR PD, MSKCC pancreatic 
cancer study controls 1276 5 1.53 1.008

20:01

SAGE, A Genome Wide Scan of 
Lung Cancer and Smoking, CIDR 
PD, SIALS, CGEMS Breast Cancer 
CGEMS Prostate Cancer, MSKCC 
pancreatic cancer study controls

5628 20 1.81 1.03

SAGE, A Genome Wide Scan of 
Lung Cancer and Smoking , 
SIALS, MSKCC pancreatic cancer 
study controls

Control: case Ratio Controls used 
Number of 
controls

Significant 
PCs

10:01 2522 7 1.71 1.015
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Performance of known pancreatic cancer associated SNPs 
  

 We next turned to the question of whether the use of additional controls in GWAS 

will enable new discoveries.  To investigate this question, we asked whether we would 

have been able to discover the four recently reported pancreatic cancer susceptibility 

SNPs in our data combined with additional controls.  We asked what rank and p-value are 

observed for each of these four SNPs both in our original cohort and as we add more 

additional controls.  Theoretically, the power to detect each of these SNPs doubles as the 

control:case ratio increases from 1:1 to 20:1 (Table 5).  We found that rank and p-value 

of the four pancreatic cancer associated SNPs improved after adding additional controls 

in a manner that appears to correlate with the computed power.  There is a two-fold 

increase in power for each of the four SNPs when the control: case ratio is increased from 

1:1 to 20:1.  SNP rs9543325 has the highest increase in power and largest improvement 

in rank and p-value. There is some fluctuation in rank and p-value for all four SNPs when 

we compare control:case ratios of 10:1 and 20:1.  We assume this is due to sampling 

variability rather than a difference in power as power plateaus out beyond a 10:1 

control:case ratio.  These results demonstrate that using additional controls in GWAS can 

help bring true positive hits towards the top of the list, though in this case none of the true 

positives reached genome-wide significance.  These powers should be compared to the 

power of the original PanScan study, which had 99% power to detect these 4 SNPs at 

α=0.05, and reasonable power at α=10-7, suggesting that our inability to find these true 

positive at genome-wide significance was to be expected. 
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We also asked if, for a given number of additional controls, the choice of dataset(s) 

from which the additional controls are taken influences our ability to detect association 

with these four SNPs.  Using additional controls from four different studies of 

approximately equal size, we asked what rank and p-value are observed for each of the 

four known pancreatic cancer risk SNPs.  We observed variability in both the rank and p-

value for each of these four SNPs depending on the choice of control samples.  As no 

control group is consistently the best for all four SNPs, we attribute this variability to 

sampling variation rather than intrinsic factors in any of the control groups (Table 6). 
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Table 5 Rank and p-value of four pancreatic cancer-associated SNPs 
This analysis is done with varying number of additional controls.  Correction for 
population stratification is performed in all analyses.  Analytical power is computed 
assuming an additive model with α= 0.05.  

 
SNP

Odds ratio
Minor allele frequency 1:01 5:01 10:01 20:01

rs505922 Rank 105668 6769 5302 216
1.2 p -value 0.393 0.02 0.01 0.0007

0.358 Power 0.2 0.33 0.349 0.364

rs9543325 Rank 477 21 72 52
1.26 p -value 0.0019 8,2x10 -5 2.5x10-4 1.6x10-4

0.317 Power 0.29 0.48 0.5 0.53

rs3790844 Rank 102024 7645 1977 1357
0.77 p -value 0.38 0.02 0.007 0.004
0.21 Power 0.265 0.49 0.51 0.53

rs401681 Rank 265649 239819 152561 157875
1.19 p -value 0.99 0.91 0.57 0.58
0.434 Power 0.198 0.313 0.32 0.347

Control:case ratio
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Table 6 Effect of choice of controls on association statistics for known pancreatic 
cancer risk SNPs.  

Analytical power is computed assuming a additive model with α= 0.05.  

 
SNP

Odds Ratio

Minor Allele Frequency SAGE
CGEMS 
Prostate 
Cancer

CGEMS 
Breast 
Cancer

CIDR PD 
and SIALS

Number of 
controls 1487 1350 1344 1065

rs505922 Rank 6769 2866 1131 481
1.2 p -value 0.02 0.01 0.004 0.0018

0.358 Power 0.333 0.328 0.32 0.315

rs9543325 Rank 21 101 133 445
1.26 p -value 8.2x10 -5 0.0004 0.0004 0.001

0.317 Power 0.483 0.477 0.476 0.459

rs3790844 Rank 7645 84087 20488 92396
0.77 p -value 0.02 0.31 0.075 0.34
0.21 Power 0.49 0.491 0.491 0.476

rs401681 Rank 239819 244531 77059 173589
1.19 p -value 0.91 0.94 0.28 0.64
0.434 Power 0.313 0.308 0.308 0.297

Control data sets
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Number of significant principal components 
 

 One choice that must be made is how many principal components are included as 

covariates in the model.  If one simply asks which principal components are significant 

using Tracy-Widom statistics 144, the number of covariates to use increases as additional 

sources of control individuals are added (Table 4).  For instance, in our example with a 

20:1 control:case ratio there are 21 significant principal components to include.  To ask 

whether these many covariates are necessary, we varied the number of top principal 

components used as covariates and measured test statistic inflation using the genomic 

control parameter λ (Figure 5).  We find that λ decreases drastically with the first 

principal component and decreases somewhat more as the next three are added (Figure 

5).  While this suggests that all 21 principal components are not needed as covariates, it 

does not tell us whether including extra principal components as covariates decreases the 

power of the test.  When we examine the 4 known pancreatic risk SNPs, we find that the 

ranks of the 4 SNPs do not change dramatically as more principal components are added 

after the first few (Table 7).  This suggests that while only 4 principal components may 

be needed in this situation to correct for population stratification, the risk of decreased 

power through adding additional principal component covariates is minimal. To address 

the question of what these 21 significant principal components may represent, we first 

asked if any of the PCs appear to associate with membership in specific studies.  Visual 

inspection of plots of two principal components at a time, with studies color-coded, does 

not reveal any striking correlation between principal components and study membership.  

Regression analysis revealed that only the top 4 principal components, for which we 
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recommend adjusting in the GWAS, are associated with study membership (data not 

shown).  We next repeated the PCA analysis with a more stringent r2 threshold for LD-

based SNP pruning.  When the r2 threshold for pruning is lowered from 0.1 to 0.05, the 

number of significant eigenvectors (Tracy-Widom p<0.05) drops from 21 to 11. 

Therefore, we conclude that using additional controls can increase the power of relatively 

small GWAS after strict QC steps and properly correcting population stratification.  



 62 

Figure 5 Genomic inflation factor lamda versus number of principal components ( 
PCs )used for correction 

There are 21 principal components that are significant using Tacy-Widom test statistics 
when the control:case ratio is 20:1. 
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Table 7 Rank of known pancreatic cancer-associated SNPs 
Analysis done was after correcting for the specified number of principal components 
(PC).  In total, 267,785 markers were analyzed. 

 

Number of PCs for correction rs9543325 rs505922 rs3790844 rs401681
0 585 103084 103905 264098
1 197 1795 2692 133722
2 162 821 2859 140725
4 76 302 1382 162016
6 77 294 1382 161914
10 65 290 1676 156465
16 56 220 1651 153981
21 52 216 1357 157875  
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1.4 Discussion  
 

 In this chapter, we have performed a practical evaluation of using additional 

controls from publicly available databases to conduct GWAS.  This approach can result 

in improved power by increasing the number of controls without any extra cost of 

genotyping.  By using data from our small pancreatic cancer GWAS, we evaluated this 

approach through comparison with results from the recently published PanScan GWAS.  

When we analyzed our pancreatic cancer data with additional controls and properly 

accounted for population stratification, we found improvement in the rank and p-value 

for all four known pancreatic cancer SNPs relative to an analysis of our case-control 

dataset alone.  However, while three of the four SNPs were significantly associated with 

pancreatic cancer in our analysis with p<0.05, these results cannot be considered an 

independent replication of the PanScan results as a large subset of our cases and controls 

were included in PanScan. 

 

 While statistical theory argues that the power of a GWAS increases as the control: 

case ratio increases for a fixed number of cases, no clear guidelines exist to determine the 

maximum number of added controls after which there is little or no added benefit.  Using 

analytical power calculations, we show that power increases rapidly as the control: case 

ratio moves from 1:1 to 10:1 and then plateaus out.  Through our analysis of the 

pancreatic cancer data, we see improved power with a 20:1 control: case ratio relative to 

a 10:1 ratio.  Based on these data, it appears that when designing a GWAS using 

additional controls, obtaining at least 10 controls for every case is extremely important, 

though additional benefit could be had by obtaining up to 20 controls for every case.   
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It is apparent that the QC steps of GWAS in the context of additional controls 

obtained from public data sources is different from conducting typical case-control 

GWAS.  Recently, Pluzhnokov al. reported a method to estimate genotyping error from 

raw signal-intensity data when using GWAS control samples from existing public 

database164.  This method can only be used when the raw signal intensity data is 

available, which is not always the case.  As an alternative approach to deal with errors 

introduced from genotype data with different origins, we propose including some controls 

to be genotyped along with the cases.  By removing SNPs that show different frequencies 

between our controls and the additional controls, we effectively reduced the false positive 

findings.  We consider this step crucial in controlling false positives, especially when raw 

intensity data is not available.  

  

Beside genotyping error caused due to different data sources, our results illustrates 

that population stratification is also a potential problem with additional controls.  If there 

is different underlying genetic ancestry in the populations from which cases and controls 

are taken, an inflated type I error will result.  This is clearly observed in our example, 

where disproportionately more self-reported white cases from the New York metropolitan 

area are of southern European or Ashkenazi Jewish ancestry than self-reported white 

controls from other parts of the U.S.  This stratification results in artificially high test 

statistics if we combine data without correcting for population structure.   Using 

simulation studies, it has been demonstrated that correction for population stratification 

can be achieved successfully by using various methods like multi-dimensional scaling 



 66 

(MDS) or principal component analysis.  We used the popular PCA software 

EIGENSTRAT to identify principal components in our data and then corrected for these 

components in logistic regression.  Adjusting for the significant principal components 

substantially reduces the genomic inflation factor in every additional control dataset we 

tested. 

 

 The proper number of principal components to consider in correcting for 

population substructure remains unclear.  Notably, the number of significant principal 

components computed using the Tracy-Widom test statistic144 increased when we 

increased the control:case ratio by adding data from different sources.  With a 

control:case ratio of 20:1, 21 significant PCs were identified.  We explored the effect of 

including different numbers of principal components in our analysis and found that after 

4 principal components are included, no additional benefit is gained by including more 

principal components.  Intriguingly, in a GWAS of Alzheimer's disease, Harold et al. 

similarly found no additional improvement in λ after accounting for 4 principal 

components.  As we found a reduced number of significant principal components upon 

lowering the r2 threshold to obtain independent markers for the PCA calculation, we 

hypothesize that many of the 21 PCs may be picking up local linkage disequilibrium 

patterns in the data rather than population substructure.  Therefore, including these 

additional principal components is not necessary for the analysis.  

 

 We acknowledge that the additional control approach is limited by choice of 

genotyping platform, as it requires the same SNP to be genotyped in all samples.  To 
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maximize overlap between SNPs, we restricted our analysis to projects that used Illumina 

chips for genotyping and further restricted analysis to only SNPs in common among all 

studies.  Alternatively, imputation techniques have been used to integrate genotype data 

from different platforms, though how such an approach will perform when different 

platforms are used to genotype the cases and controls remains unclear.   

 

Besides these technical issues, there are conceptual limitations to this approach.  

Using additional controls works best in consideration of genetic effects alone.  While in 

theory gene-environment interaction can be considered if appropriate environmental data 

is present in dbGaP, in practice this information is often found in only some datasets and 

details of the collection of this data likely varies between studies.  

 

 Based on these results, it appears that using this approach with only several 

hundred cases to study a disease typical of the common diseases studied with GWAS will 

result in the true disease loci rising to the top of the list of SNPs but not reaching 

genome-wide significance. Therefore, we propose that the use of additional controls will 

work best in the context of a large case/control study.  In this context, a subset of cases 

and controls would be selected for genome-wide genotyping.  These data would be 

combined with additional controls.  The top 103-104 SNPs from this analysis would then 

be genotyped in the full case/control study both to increase power and remove false 

positives.  In other words, additional controls may work best when included in stage 1 of 

a two-stage GWAS design.  Standard downstream analyses including independent 

replication and fine mapping would then be conducted on SNPs that pass the second 
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stage.  Thus, the use of additional controls is a promising method to increase sample sizes 

thus the power of the study without additional cost.  
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CHAPTER 2 

Genome wide association study of myeloproliferative neoplasms 

 

2.1 Introduction 
 

 As discussed in the introduction, PV, ET , and PMF are chronic MPN which are 

characterized by clonal proliferation of one or more terminally differentiated myeloid 

elements.165 The genetic basis for PV, ET, and PMF remained an enigma until 2005, 

when multiple groups identified a somatic activating mutation in the JAK2 tyrosine 

kinase (JAK2V617F) in ≈90% of PV and in 50-60% of ET/PMF.  

 

  The majority of studies to date have focused on the role of genetic and epigenetic 

events that are stochastically acquired and selected during MPN pathogenesis, whereas 

few studies have addressed the role of germline genetic variation in MPN pathogenesis.  

Two recent studies, however, suggest that germline genetic context is important in these 

disorders. Pardanani and colleagues recently analyzed 32 single nucleotide 

polymorphisms (SNPs) in JAK2, EPOR, and MPL in affected tissue (granulocytes) from 

179 patients with PV and ET, and identified three JAK2 SNPs which were enriched in 

either ET or PV. Although these results suggest there are host genetic variants that 

influence MPN phenotype, they did not perform a genome-wide analysis for MPN 

predisposition alleles.  More importantly, given the high rate of acquired uniparental 

disomy at the JAK2 locus in PV, but not ET, their results were likely influenced by 

somatic loss of heterozygosity at the JAK2 locus in the different MPN.  It has also been 

observed that there is familial clustering in MPN cases, and in these kindreds somatic 
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JAK2V617F and/or JAK2 exon 12 mutations, can be identified in some, but not all, 

affected family members, suggesting there are inherited loci that predispose to the 

somatic acquisition of JAK2 mutations.  In addition an epidemiologic study of 11,039 

MPN cases, 43,550 controls, and 24,577 first degree relatives of MPN patients in 

Sweeden found that relatives of MPN patients are at ≈ 5-7 fold increased risk for the 

development of MPN, consistent with the existence of one or more MPN predisposition 

loci.  Given these observations, we hypothesized there are unidentified germline loci 

relevant to MPN pathogenesis, and used genome-wide SNP array data to identify 

germline predisposition loci relevant to the pathogenesis of PV, ET, and PMF.  
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2.2 Materials and Methods 
 

SNP Array Analysis of MPN Samples 
 

 MPN patient samples were obtained from the Harvard MPD Study patient 

cohort,17 and were collected using IRB approved protocols, all patients provided 

informed consent. DNA was extracted from granulocytes and buccal swabs as previously 

described,17 and RNA was extracted from patient cells stored in Trizol.  217 granulocyte 

DNA samples, including 113 PV patient samples and 68 ET patient samples, were chosen 

for SNP array analysis based on clonality studies and JAK2V617F mutational burden 166 

in order to limit analysis to samples with >80% MPN cells.  DNA samples were 

genotyped using Affymetrix 250K (Sty) arrays, Arrays were scanned with the GeneChip 

Scanner 3000, and Affymetrix Genotyping Tools Version 2.0 to ascertain genotypes 

(Affymetrix, Santa Clara, CA). 

 
Principal Component Analysis of MPN Patients/Controls 
 

 For principal component analysis we used genome-wide data from the 217 MPN 

cases and from 3000 controls from the Wellcome Trust Case Control consortium,167 

which were genotyped with the Affymetrix GeneChip 500k Mapping Array Set, of which 

the 250 K Sty chip is a subset. Before analysis, we performed quality control filtering of 

both samples and SNP separately for cases and controls and then merged the dataset 

using the common set of SNPs present in the two cohorts. To do so, we first filtered out 

the ambiguous SNPs (A/T or G/C alleles) to ensure we unambiguously know strand when 
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we merge the two datasets. 35218 ambiguous markers (out of 231786) were removed 

from the MPN genotype dataset, while 77934 ambiguous markers (out of 486661) were 

removed from the WTCCC control cohort. The quality control filters and quality 

assessment removed subjects with low genotype completion rates (<90%). Further data 

cleaning of the autosomal SNPs typed in both datasets retained SNPs that have a minor 

allele frequency (MAF) >5%, a rate of missing genotype <1%, and are in Hardy-

Weinberg equilibrium in the WTCCC controls (exact test p>10-7). In total, 62775 markers 

were identified for analysis and used in the merged case and control dataset.  

 

 To investigate potential population stratification biases that could be introduced 

by the shared controls we performed principal component analysis using 

EIGENSTRAT.144 To reduce the linkage disequilibrium between markers, we first used 

PLINK to filter markers such that all remaining markers are in low LD (r2 < 0.1, 

calculated in sliding windows 50 SNPs wide, shifted and recalculated every five SNPs). 

We applied the EIGENSTRAT program with default parameters and no outlier removal 

to infer axes of variation in the combined dataset. The case and controls that cluster 

together on the eigenvector plot (with the first two axes of variation) were used for the 

association analysis.  

 

 The main SNP of interest in JAK2, rs10974944, has G and C alleles and was 

therefore eliminated by our filtering for ambiguous SNPs.  To see at what rank it would 

appear in a GWAS for MPN risk alleles, we included it in our genome-wide association 

analysis.  Specifically, we included the germline genotypes generated using TaqMan for 
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the cases with the genotypes provided by the WTCCC data for the controls.  A test of 

allelic association was performed using –assoc in PLINK. 

Statistical Analysis 
 
 The frequencies of the genotypes between cases and controls were compared 

using Pearson’s  X2 test, and when required, Fisher’s exact test. The ANOVA test was 

used for comparison of JAK2V617G allele burden between different genotypes. SPSS 

version 16.0 for Windows (SPSS, Chicago, IL, USA) was used to perform all statistical 

tests. 

Genotyping and Expression Analysis    
 

 Granulocyte and buccal DNA samples were genotyped using TaqMan SNP 

genotyping assays for rs10974944 and rs12500918 (Applied Biosystems, Foster City, 

CA) assays.  DNA samples from CEU HapMap founders were used as controls.  

Expression of JAK2 and HPRT1 were measured using TaqMan Gene Expression Assays 

(Applied Biosystems).  This was done in collaboration with Levine Lab. 

 

JAK2 rs10974944/Mutation Clonal Analysis  
 

 A 3Kb PCR product containing rs10974744 and exon 14 of JAK2 was amplified 

from JAK2V617F-positive patients heterozygous for rs10974944 in the germline. PCR 

products were cloned using the TA cloning kit, and single colonies were sequenced using 

M13 and T7 primers. Sufficient colonies were sequenced from each patient to ascertain 
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which germline genotype was in cis with the V617F allele in granulocyte DNA from each 

informative patient. This was done in collaboration with Levine Lab (Outi Kilpivaara). 

 



 75 

2.3 Results 
 

Case-Control Analysis of Genome-Wide SNP Array Data Identifies JAK2 as a 
Major MPN Risk Allele 
 

 We performed a GWA study to identify genetic variants associated with MPN 

predisposition. We used the shared controls approach described in Chapter 1 for MPN 

GWA study.  To do so, we combined all unambiguous SNPs genotyped in our MPN 

samples and in the WTCCC with our data and asked whether allele frequencies differed 

significantly between the two groups at any of the SNPs. In order to control for 

population heterogeneity, we used principal component analysis to detect population 

substructure in the combined cohort of MPN samples and WTCCC controls based on the 

genome-wide genotyping data. We selected case and control individuals who cluster on a 

plot of the first two principal components in a region that suggests ancestry from northern 

and western Europe (Figure 6). Four SNPs were significantly associated with MPN risk 

after correcting for residual population stratification and multiple testing.  One of these 

SNPs is rs10974944, an intronic SNP in JAK2 gene in chromosome 9 that represents a 

MPN risk SNP (Figure 7). 
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Figure 6 Principal component analysis of MPN cases and WTCCC 
controls
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Figure 7 Genome wide SNP analysis of MPN cases and WTCCC controls 
 

The arrow marks the position of rs10974944. 
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Germline Variation at the JAK2 Locus Influences MPN Predisposition 
 

 Genome-wide analysis of SNP array data suggested a SNP at the JAK2 locus 

(rs10974944) associated with MPN predisposition However, our SNP array analysis was 

performed on affected (granulocyte) tissue from MPN patients, and we and others have 

shown that acquired uniparental disomy leading to homozygosity for the somatic 

JAK2V617F mutation is more common in PV than in ET14-17,26. We therefore compared 

the frequency of the genotypes at rs10974944 in germline DNA from 324 PV, ET, and 

PMF patients to published genotypes for WTCC controls (Table 8) and observed that the 

frequency of both the GG and CG genotypes is more common in cases than controls 

(OR=3.1, p=4.1x10-20) (Table 8). This is consistent with the G allele at rs10974944 

functioning as a dominant allele with effects in either the heterozygous or homozygous 

state. We observed that the minor allele (GG) was significantly more common in PV than 

in ET (p=0.01). These data suggest JAK2 serves as a MPN predisposition locus, and that 

germline variation at JAK2 more strongly influences MPN predisposition than MPN 

phenotype. 
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Table 8A Germline genotype for JAK2 SNP rs10974944 and MPN predisposition 
 
 

Rs10974944 Genotype MPN WTCCC
GG 70 (21.6%) 195 (6.5%)
CG 161(49.7%) 1139 (38.0%)
CC 92 (28.7%) 1665 (55.5%)

p OR (95% CI)
GG vs. CG+CC 1.5x10-21 4.0 (2.9-5.4)
GG/CG vs. CC 4.1x10-20 3.1 (2.4-4.0)
GG vs. CC 5.1x10-32 6.4 (4.6-9.1)
CG vs. CC 2.10x10-12 2.5 (1.9-3.3)  

 
 
 
B. Germline Genotype for JAK2 SNP rs10974944 in MPN cases and Matched WTCC 

Controls According to Principal Component Analysis 
 
 

   

Rs10974944 Genotype MPN WTCCC
GG 18 (21.7%) 195 (6.6%)
CG 49(49.8%) 1121 (37.9%)
CC 26(28.5%) 1646 (55.5%)

p OR (95% CI)

GG vs. CG+CC 3.5x10-07 3.7 (2.0-6.4)
GG/CG vs. CC 1.3x10-06 3.0 (1.9-5.0)

GG vs. CC 2.3x10-10 6.0 (3.0-11.0)
CG vs. CC 0.0021 3.0 (1.5-4.2)  
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Germline Variation at JAK2 Specifically Predisposes to the Development of 

JAK2V617F-Positive MPN 

 

 Given that somatic mutations at JAK2 are common in PV, ET, and PMF, we 

theorized that the effects of germline genetic variation on MPN predisposition might be 

exclusive to JAK2 mutated MPN.  We assessed rs10974944 genotype in 321 MPN cases 

which had been genotyped for the JAK2V617F allele using a sensitive, allele-specific 

real time PCR assay able to detect JAK2V617F allele burden>1%,166 and for JAK2 exon 

12 mutations using MALDI-TOF mass spectrophotometric genotyping for all known 

exon 12 alleles (unpublished data done by Levine lab). We found that allelic variation at 

rs10974944 was strongly associated with predisposition to JAK2 positive MPN in a 

dominant genetic model (OR=4.0, p=7.7x10-22) (Table 9).   In contrast, allelic variation 

at rs10974944 was much less strongly associated with JAK2 negative MPN in a 

dominant genetic model (OR=1.6, p=0.06).  We also assessed whether the effects of 

germline genetic variation on MPN predisposition might vary with MPN phenotype .We 

found that allelic variation at rs10974944 was strongly associated with predisposition to 

PV (OR=4.3, p<1.0x10-16) and ET (O.R.=2.1, p=6.7x10-5).  The stronger relationship 

between rs10974944 and predisposition to PV is in part due to the higher incidence of 

JAK2 mutations in PV (95%) compared to ET (65%) in our patient cohort; we observed a 

higher association between rs10974944 genotype and JAK2 positive ET (O.R.=2.8 

p=2x10-5).    
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Table 9 Germline genotype for JAK2 SNP rs10974744 in JAK2V617G -positive 
MPN cases and negative MPN cases compared with WTCCC 
 

           

rs10974944 genotype JAK2-positive MPN JAK2-negative MPN WTCC
GG 60 (24.5%) 10 (13.2%) 187 (6.6%)
CG 127 (51.8%) 32 (42.1%) 1078 (37.9%)
CC 58 (23.7%) 34 (44.7%) 1578 (55.5%)

Total 245 76 2843

JAK2-positive MPN p
GG vs. CG+CC 8.4x10-24
GG/CG vs. CC 7.7x10-22

GG vs. CC 6.9x10-37
CG vs. CC 7.9x10-14

JAK2-negative MPN P
GG vs. CG+CC 0.017
GG/CG vs. CC 0.06

GG vs. CC 0.008
CG vs. CC 0.21

2.3(1.1-4.4)
1.6 (1.0-2.5)
2.6 (1.3-5.3)
1.4 (0.8-2.3)

OR (95%  CI)
4.7 (3.4-6.5)
4.0 (3.0-5.5)
8.8 (6.0-13.1)
3.2 (2.3-4.4)

OR (95%  CI)
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JAK2V617F is Most Commonly Acquired in cis with JAK2 rs10974944 
 

 We then investigated the relationship between germline variation at the JAK2 

locus and MPN risk and the high rate of somatic mutations at this same locus.  Analysis 

of JAK2V617F-positive MPN cases revealed a strong association between germline 

rs10974944 genotype and JAK2V617F allele burden (p<0.01), and an even stronger 

association between granulocyte rs10974944 genotype and JAK2V617F allele burden 

(p<0.00001). We then investigated 42 patients who were heterozygous for rs10974944 in 

their germline and a somatic JAK2V617F allele burden>50% consistent with emergence 

of a homozygous JAK2V617F mutant clone.  We found in 38 of 42 cases acquisition of a 

homozygous JAK2V617F mutation was associated with somatic conversion to a 

homozygous GG genotype at rs10974944, strongly suggesting rs10974944 favors the 

acquisition of JAK2V617F in cis with the MPN risk allele.  We then performed long 

range PCR of a portion of the JAK2 locus which included both rs10974944 and 

JAK2V617 on granulocyte DNA from 30 patients who were heterozygous for 

rs10974944 in their germline, and sequenced >8 individual clones in order to ascertain 

the strand on which JAK2V617F was acquired (Figure 8B).  

 
 There are many different possibilities which might explain how germline 

variation at the JAK2 locus might favor the acquisition of somatic JAK2 mutations, 

including allele-specific expression, linkage disequilibrium (LD) with non-synonymous 

SNPs which alter JAK2 function or LD with changes in the 3’ untranslated region 

(3’UTR) which affect miRNA binding.  We did not observe differences in JAK2 

expression in patients with different rs10974944 genotypes, and sequence analysis of the 
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entire open reading frame and of the 3’UTR in 48 MPN cases did not reveal genotype-

specific non-synonymous sequence alterations or alterations in the 3’UTR.  Moreover, 

haplotype structure of the JAK2 locus in CEPH founders (Figure 8A) shows that 

rs10974944, JAK2 exon 12, and JAK2V617 are contained in a common haplotype block 

distinct from the promoter and 5’ exons of JAK2.  These data suggest that rs10974944 

favors the acquisition of JAK2 mutations in cis with the MPN risk allele by a heretofore-

unidentified mechanism. 
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Figure 8 JAK2V617F is acquired in cis with JAK2 SNP rs10974944 
Figure 8A shows the haplotype structure of the JAK2 locus in CEPH HapMap founders, 
showing that Rs10974944 and exon 14 of JAK2 are in a shared haplotype approximately 
3Kb apart.   
Figure 8B shows the precise location of ts10974944 in relation to exons 12, 13 and 14, 
and shows the result of long-rand PCR and clonal sequence analysis of this 3Kb fragment 
in a patient who was heterozygous for rs10974944 in their germline and heterozygous for 
JAK2V617F in their affected tissue.  Analysis demonstrates in this patient the G allele at 
rs 10974944 is in cis with the mutant T allele at JAK2V617, whereas, the C allele is in cis 
with the wild-type G allele at JAK2V617.  The G allele was found to be in cis with the 
mutant T allele in 27 of 30 JAK2V617F positive MPN patients whom were heterozygous 
for rs10974944, suggesting JAK2V617F is almost always acquired in cis with the risk 
allele at rs10974944 (experiments performed by Outi Kilpivaara) 
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2.4 Discussion 

 
 The discovery of activating mutations in the JAK-STAT pathway in the majority 

of patients with PV, ET, and PMF provided important insight into the pathogenesis of 

these MPN; however, there remain important questions regarding the role of unknown 

inherited and acquired disease alleles in MPN pathogenesis.  Most studies have focused 

on the identification of additional somatic alleles acquired during MPN pathogenesis; in 

contrast we searched for germline alleles that contribute to MPN predisposition and/or to 

MPN phenotypic pleiotropy.  Genome-wide analysis allowed us to identify a germline 

variant in the JAK2 gene that predisposes to the development of JAK2-mutant MPN that 

are preferentially associated with specific MPN phenotypes. 

 

 The observation that a JAK2 germline haplotype is markedly enriched in MPN 

cases compared to controls suggests that germline variation at the JAK2 locus is an 

important contributor to MPN predisposition.  Although genome-wide association studies 

have identified predisposition loci for a spectrum of human diseases, in most cases the 

individual loci identified in these studies have a modest effect on disease predisposition.  

For example, a recent genome-wide association study in chronic lymphocytic leukemia 

identified six previously unreported CLL risk loci, each of which had an odds ratio less 

than 1.6 and were estimated to account for less than 3% of the excess familial risk of 

CLL. In contrast, in a dominant genetic model the GG/CC genotype at JAK2 rs10974944 

contributes significantly to the excess familial risk of MPN (O.R.=3.1, population 

attributable risk=46.0%).  These effects are most evident in JAK2-positive MPN 
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(O.R.=4.0, population attributable risk=55.3%), suggesting that germline variation at 

JAK2 is a major determinant for the predisposition to develop JAK2-positive MPN.  

 

 The observation that germline variation in JAK2 predisposes to somatic activating 

mutations at the same locus is also of significant importance. We found that somatic 

JAK2 mutations were most commonly acquired in cis with the JAK2 predisposition 

haplotype, suggesting a direct interaction between haplotype-specific genetic variation in 

the JAK2 locus and secondary acquisition of somatic mutations on the same strand. We 

did not observe genotype-specific changes in JAK2 expression, nor did we identify non-

synonymous alterations in JAK2 which were in linkage disequilibrium with the JAK2 

predisposition SNP, suggesting it is unlikely the JAK2 MPN predisposition allele directly 

modulates JAK2 expression and/or JAK2 function.  We also did not observe genotype-

specific alterations in the 3’UTR of JAK2 which could influence miRNA binding, which 

has been delineated as the mechanism by which an alteration in the 3’UTR of the RAS 

locus predisposes to the development of non-small cell lung cancer. We hypothesize that 

genotype-specific genomic variation in the JAK2 haplotype block increases the somatic 

mutation rate in this locus.  Although additional genetic and functional studies are needed 

to test this hypothesis, there is precedent for germline variation predisposing to somatic 

alterations at the same locus, including a previous study that found that germline variants 

in the APC gene present in the Ashkenazi Jewish population increase risk for the 

development of colorectal cancer by creating a hypermutable region in the APC gene.168 

It is possible that germline variation in the JAK2 locus may be specifically associated 

with an increase in the rate of the guanine to thymidine mutation that causes the valine to 
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phenylalanine substitution at codon 617. Although substitution of tryptophan, 

methionine, isoleucine, and leucine) for valine at codon 617 results in constitutive JAK2 

activation, and alternate activating JAK2 mutations involving codon 683 are observed in 

Down syndrome associated ALL, JAK2V617F predominates in PV, ET, and PMF. These 

data suggest that germline context may be important in delineating why distinct 

mutations in JAK2 are acquired in different neoplasms.  

 

           Although this study demonstrates that germline genetic context is important in 

MPN pathogenesis, it is likely there are additional germline loci important in MPN 

predisposition and pathogenesis. Our data suggests that germline variation at the JAK2 

locus has a minimal contribution to JAK2V617F-negative MPN predisposition. While 

this data must be interpreted with the caveats that our genome-wide SNP data comes 

from diseased tissue which may have undergone somatic changes and that we do not have 

complete coverage of the genome due to the large number of ambiguous SNPs removed, 

the idea that there are additional MPN susceptibility loci that can be identified through 

genome-wide association analysis is intriguing, These data suggest that germline 

variation is an important contributor to MPN phenotype and predisposition, and that 

additional genome-wide studies will identify additional germline alleles relevant to MPN 

pathogenesis. 
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CHAPTER 3  
 

Mechanism for JAK2 susceptibility haplotype in MPN 

 

3.1 Introduction  
 

 Using the GWAS approach described in Chapter 2, we identified a MPN 

susceptibility locus (tagged by SNP rs10974944) in the JAK2 gene on chromosome 

9153,169,170. Interestingly, by analyzing MPN patients with allele-specific PCR, we found 

that the somatic gain-of-function mutation JAK2V617F was frequently acquired in cis 

with the rs10974944 risk allele. Concurrent with the publication of our findings, two 

independent investigators also identified a JAK2 haplotype (referred to as “46/1” or the 

“GGCC” haplotype) as a major risk factor for the development of MPN. Jone et al. 

demonstrated that both homozygous and heterozygous JAK2V617F -positive disease is 

preferentially associated with 46/1 and that this haplotype seems to harbor an as-yet-

uncharacterized functional variant. They estimated that 46/1 accounts for 50% of the 

population attributable risk of developing an MPN, but that it does not account for 

familial MPN169. Olcaydu et al. estimated that over 80% of all the JAK2V617F mutations 

in MPN occur on this specific JAK2 haplotype171. Thus, these studies have demonstrated 

that the 46/1 JAK2 haplotype predisposes to JAK2V617F-positive MPN.  

 

 Although the mechanism underlying this association remains obscure, two 

hypotheses have been proposed. First, the 46/1 haplotype may be inherently more 

genetically unstable and acquire the V617F somatic mutation at a faster rate than other 
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haplotypes (referred to as the “hyper-mutability” hypothesis). As shown in Figure 9A, 

DNA sequence variants can define somatic mutability and could make some haplotypes 

more susceptible to DNA damage. A difference in mutability between two haplotypes 

could explain why JAK2V617F preferentially occurs on the 46/1 haplotype.  A second 

hypothesis suggests that the 46/1 haplotype may carry a functional variant(s) that causes 

allele-specific activation or regulation of the JAK2 gene. The V617F somatic mutation 

may arise on all haplotypes at equal rates, but the 46/1 haplotype may confer selective 

advantage to the V617F-positive clone (referred to as the “activation” hypothesis – 

Figure 9B). 

   

 We aimed to explore these hypotheses to understand the underlying mechanism of 

the well-established findings of the 46/1 JAK2 risk haplotype. We found that the tag SNP 

rs10974944 associated with MPN predisposition is located within 300kb extended 

linkage disequilibrium (LD) block that includes JAK2, INSL4 and INSL6 genes. We 

attempted to sequence this 300kb region in MPN cases using targeted amplification 

followed by next-generation sequencing. Since our previous GWAS was limited to only 

60K SNPs, we expanded our study by performing a second GWAS with high-density 

SNP array data for 237 patients diagnosed with MPN and 1,037 shared controls. We 

identified 9 SNPs associated with MPN risk at genome-wide significant levels (p-value < 

1X10-7). However, these SNP were in strong linkage disequilibrium with our previously 

identified MPN risk SNP (rs10974944) located in JAK2, thus we have replicated our 

previous findings.  
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 We next explored the 46/1 haplotype in search of a functional variant that could 

result in allele-specific activation of JAK2 in MPN cases. In this study, we used a 

combination of genotyping, imputation, sequencing, bioinformatics and functional 

annotation to fine-map the disease locus. Our aim was to refine the most likely disease-

associated variant based on association testing at genotyped and imputed SNPs and 

computationally predict the causal variant associated with MPN predisposition.  
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Figure 9 The two hypotheses to explain 46/1 MPN risk haplotype 
Two hypotheses suggested to describe the observation that somatic mutation 
JAK2V617F occurs preferentially on 46/1 JAK2 risk haplotype.  
 
A) Hyper-mutability hypothesis where 46/1 haplotype may be genetically 
unstable and may be susceptible to DNA damage.  

B) Activation hypothesis where 46/1 haplotype may harbor functional 
variant(s) that affect allele specific JAK2 activation and provides selective 

          
 

Expansion 

Expansion 
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3.2 Methods and Materials 
 

MPN case selection  
 

 In total, 237 patients diagnosed with MPN were recruited for this study from the 

Boston or New York areas. The cases were genotyped on the llumina 1M Omni-Quad 

SNP genotyping array. A subset of 24 MPN cases were chosen for targeted sequencing 

experiments based on their genotypes at the tag SNP rs10974944. This subset included 

twelve MPN cases, who were homozygous G/G at rs1094744 (referred as “GG-MPN” 

cases) and twelve MPN cases who were homozygous C/C at rs1094744 (referred as “CC-

MPN” cases). The GG-MPN cases had high JAK2V617F allele burden (greater than 

90%) and acquired uniparental disomy at this locus whereas the CC-MPN cases did not 

acquire somatic mutation JAK2V617F. To determine both the somatic and germline 

genotypes at rs10974944, a Taqman genotyping assay for rs10974944 was performed for 

all MPN cases using DNA extracted from granulocytes (i.e disease tissue) or 

buccal/saliva samples, respectively.  

 

JAK2 locus definition 
 

 The MPN risk SNP rs10974944 that was identified by GWAS lies in an extended 

300kb LD block as defined by HapMap CEU population using UCSC genome browser 

(Figure2). All analysis was done for the 300kb JAK2 locus (Chr9: 4885245 to 

5269610bp).  
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Targeted amplification and next-generation sequencing 
 

 Targeted amplification of the 300kb JAK2 risk locus was performed using the 

RainDance approach at the MSKCC genomics core facility. Briefly, 1284 overlapping 

primer pairs were designed by RainDance software with primer length ranging from 18 to 

25 nucleotides. The mean size of the amplicons was 200bp and primer sets were obtained 

from the RainDance techonology. Library preparation and sequencing run was performed 

using the ABI SOLiD sequencing platform at MSKCC genomic core facility according to 

manufacture’s protocol. 

 

Single nucleotide variant analysis 
 

 ABI SOLID sequencing reads were mapped using the Bioscope pipeline ( Corona 

Lite) at the MSKCC bioinformatics core facility. Using Samtools, the uniquely mapped 

reads from the Bam file were pileup using Human Reference sequence Mar. 2006 

(NCBI36/Hg18). We used the variant calling algorithm VarScan 2.2172 to identify single 

nucleotide variants. The filters used for variant calling were 1) minimum read depth at a 

position to make a call >=10X, 2) minimum supporting reads at a position to call variants 

is >=10X and 3) minimum variant allele frequency threshold is >=25%. Homozygous 

calls were made where the minimum variant allele frequency threshold was greater than 

or equal to 90%. For heterozygous calls; we used variant allele frequency threshold 

between 40-60%. To minimize the number of false variant calls, we employed the 
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DiBayes toolset as a secondary mapping/variant pipeline. Only single nucleotide variants 

called by both pipelines were used downstream analyses.  

 To determine if variants identified in the MPN cases were ancestral or derive 

alleles, we compared the variants to the human ancestral sequence published by the 1000 

Genomes Project77. We compared the count of single nucleotide variants present in GG-

MPN cases versus CC-MPN cases using the human ancestral sequence reference. The 

Wilcox statistical test was performed to determine if there is any significant difference in 

the accumulation of variants over the generations in the two groups of MPN cases. We 

downloaded the single nucleotide variant call dataset for the 60 healthy individuals from 

European ancestry (HapMap CEU population) published by the 1000 genomes project.  

We analyzed these healthy CEU individuals to determine if there were any haplotype 

specific difference in the number of variant sites. 

 
Genotyping MPN cases and shared controls 
 

 In total, 237 MPN cases were genotyped on the Illumina Omni-1 Quad SNP 

genotyping array at the Genomics Core Laboratory of MSKCC according to the 

manufacturer's protocol.  We downloaded genotype data of healthy individuals from 

NIH's Database of Genotypes and Phenotypes (dbGaP) to use as shared controls for our 

present GWA study.  All individuals used as controls in the underlying study are of 

European ancestry.  Specifically, genotype data for 1037 healthy controls from the 

Melanoma study was used since they were genotyped in the same platform as MPN cases 

(Illumina Omi-1 Quad) (dbGaP accession id: phs000187.v1.p1.c1).  
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Genotype data processing and association testing 
 

 All genotype data was processed using PLINK 69.  We performed several steps of 

quality control (QC) to the MPN case dataset and the shared control datasets separately 

before merging them. Firstly, ambiguous SNPs (A/T or C/G) were removed from the 

analysis due to strand ambiguity in the two datasets. Next, we removed individuals with 

more than 10% of SNPs not called and removed SNPs that had >1% missing genotypes 

or a minor allele frequency <5%. A total of 723,486 markers passed QC in both the MPN 

case and shared control datasets that passed QC.  The datasets were then merged using 

PLINK, restricting analysis to a set of SNPs common to both datasets. Following this, a 

second round of QC steps was performed (mainly to remove markers that were out of 

Hardy-Weinberg equilibrium in controls (p<1x10-7)). We also removed SNPs that 

showed a significant difference in missingness rates between cases and controls (p<1x10-

7). Thus, final dataset included 723,016 markers for 180 MPN cases and 1037 shared 

controls.  

 

Population stratification correction and association test 
 

 To adjust for population substructure, we performed principle component analysis 

using the EIGENSTRAT program from the EIGENSOFT 2.0 package144.  We first 

filtered the Illumina Omni 1 SNP genotype data by removing markers in high linkage 

disequilibrium (LD). This gave us a set of 41,636 SNPs for which pairwise r2 values 

within a window of 50 SNPs were all <0.1 (--indep-pairwise 50 5 0.1 command in 

PLINK).  These markers were then used as input for EIGENSTRAT.  Principal 
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components were computed and outliers removed using default parameters. Eight 

significant principal components were determined using the Tracy-Widom statistic 

(p<0.05) and were used as covariates in a logistic regression model for risk association. 

 

Imputation and association tests 
 

 After performing QC on the Illumina Omni-1 SNP genotype data, we used the 

IMPUTE program (version 2.1.2)78, which imputes unobserved genotypes in MPN cases 

and shared controls based on a set of known haplotypes derived from initial low coverage 

sequencing of European ancestry (CEU) samples in the 1000 Genomes Project. 

Imputation was done for the 300kb JAK2 locus (Chr 9: 4880kb-5270kb, NCBI hg18). We 

had genotype data for 93 SNPs in this region from the Illumina SNP array data; these 

genotypes were used as input for imputation. Using default parameters for IMPUTE, 

there were 1,034 SNPs imputed in the analysis region based on 1000 Genomes Project 

reference haplotypes. The output from IMPUTE was converted to ped (PLINK) format 

for further analysis. Association testing was performed by use of a logistic regression 

model (in PLINK) that included the top eight principle components of population 

substructure.  Furthermore, the logistic regression analysis was conditioned on the initial 

tag SNP (rs10974944) to determine if there were independent signals present in 300kb 

LD block associated with MPN predisposition. 
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Functional annotation 
 

 We examined two sources of functional annotation: 1) the ENCODE integrated 

regulation track published in the UCSC genome browser, and 2) Consite, a user-friendly, 

web-based tool for finding cis-regulatory elements in genomic sequences based on the 

TRANSFAC database173. The ENCODE integrated regulation tracks contain information 

relevant to the regulation of transcription based on analyses from the ENCODE project. 

The “Transcription” (Txn) track shows transcription levels assayed by sequencing of 

polyadenylated RNA from a variety of cell types. We focused on the Txn Factor ChIP-

seq track, which shows DNA regions where transcription factors (proteins responsible for 

modulating gene transcription) bind as assayed by chromatin immunoprecipitation with 

antibodies specific to the transcription factor followed by sequencing of the precipitated 

DNA (ChIP-seq). We downloaded the ChIP-seq signal data from the UCSC browser for 

the 300kb JAK2 locus data (Chr9: 4885245 to 5269610). Using this data, we next 

identified the set of imputed SNPs that resided in regions of elevated ChIP-seq signals. 

Finally, we used Consite to identify putative transcription factor binding sites  within 

these regions whose binding efficiency could be altered due to presence of SNPs.  

 

Allele-specific JAK2 expression in MPN cases  
 

 8 MPN cases were analyzed to determine whether JAK2 is expressed in an allele-

specific manner. These cases were genotyped at rs10974944 using a Taqmann SNP 

genotyping assay and were found to be heterozygous (CG). To determine the allele-

specific expression of JAK2 in MPN cases, we assayed an exonic SNP, rs2230724 that 

http://genome.ucsc.edu/ENCODE/
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was in perfect LD with the JAK2 risk SNP rs10974944. The Sanger sequence traces of 

genomic DNA and cDNA obtained from RNA at the exonic SNP rs2230724 were 

compared visually to check the allele-specific difference between gDNA and cDNA 

trace. This was done by Levine lab to understand functional difference between the risk 

and wild type haplotype.
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3.3 Results 

 
Targeted Sequencing of JAK2 locus 
 

 The risk-associated SNP rs10974944 is located in a 300 kb extended linkage 

disequilibrium block on chromosome 9 (Chr9: 4885245 to 5269610, hg18) as shown in 

Figure 10. To test whether this SNP confers hyper-mutability at the JAK2 locus, we 

compared two groups of MPN cases: those carrying the 46/1 MPN risk haplotype, which 

is tagged by rs10974944, and those not carrying the 46/1 haplotype.  Specifically, twelve 

MPN cases homozygous for the rs10974944 risk allele (referred as GG-MPN cases) and 

twelve MPN cases homozygous for the protective allele (referred as CC-MPN cases) 

were processed for targeted amplification of the 300kb LD block followed by next 

generation sequencing. 80% of the targeted region was captured with a minimum of 5X 

read coverage. After mapping the reads from the SOLID run, we used two methods, 

VarScan 2.2 and diBayes, to identify single nucleotide variants carried by each of the 

analyzed cases.  Using the NCBI36/hg18 Human genome build as a reference, we found 

that there was a significant difference in the number of single nucleotide variants present 

in GG-MPN cases when compared to CC-MPN cases (Table 10). Notably, the 

NCBI36/hg18 reference sequence contains a C allele at SNP rs10974944, which 

indicated the presence of the wild-type haplotype at JAK2 locus. To determine if the 46/1 

haplotype acquires more single nucleotide variants over generations when compared to 

the wild-type haplotype, we recomputed the number of single nucleotide variant calls in 

both sets of MPN cases using the human ancestral sequence published by 1000 Genomes 
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Project as reference. As shown in Figure 11, no significant difference in the number of 

single nucleotide variants was found between the two groups of MPN. 



 101 

Figure 10 Schematic diagram of 300kb JAK2 risk locus 
Obtained from the UCSC genome browser. The LD pattern shown is based on the 
HapMap Phase3 CEU population.  
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Table 10 Single nucleotide variant count in MPN cases with or without 46/1 risk 
haplotype 

The right-most column shows the number of single nucleotide counts obtained from 
SOLID sequencing data when using the NCBI36/hg18 build as reference. Somatic 
genotypes at rs10974944 were assayed using blood-derived DNA (i.e. disease tissue). 
Germline genotypes at rs0974944 were assayed using  buccal- or saliva-derived DNA. 
Diagnosis:  polycythemia vera (PV) or essential thromocythemia (ET). 

 
Using NCBI Hg18 as 
reference

MPN_id Diagnosis
Somatic 
genotype

germline 
genotype

JAK2V61
7F 

mutation 
burden Age Haplotype Number of variants 

121 PV CC CC 0.08 67 C 82
285 ET CC CC 0.11 61 C 86
166 PV CC CC 0.18 NA C 193
241 ET CC CC 0.59 60 C 371
265 ET CC CC 1.36 49 C 150
396 ET CC CC 0.03 46 C 336
164 PV CC NA 0.06 NA C 382
489 ET CC CC 0.1 74 C 119
40 PV CC CC 0.11 54 C 293
390 ET CC CC 0.12 53 C 199
427 ET CC CC 0.07 49 C 222
205 ET CC CC 3.45 49 C 208

290 ET GG CC 74.61 50 G 419
19 PV GG GG 94.13 44 G 332
175 PV GG GG 58.01 64 G 424
303 PV GG GG 81.18 77 G 374
168 PV GG CG 94 52 G 391
59 PV GG GG 94.16 59 G 396
328 PV GG CG 95.11 53 G 404
162 PV GG GG 58.66 60 G 440
155 PV GG CG 89.19 73 G 407
105 PV GG GG 88.36 50 G 427
179 PV GG GG 98.43 63 G 431
10 PV GG GG 99.34 67 G 422

8.8x10-6

rs10974944 genotype

Wilcox test p-value
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Figure 11 Single nucleotide variant counts for MPN cases with and wihout 46/1 risk 
haplotype using human ancestral sequence as reference 

y-axis is the number of single nucleotide variants counts obtained for 12 CC-MPN cases 
(without 46/1risk haplotype) and 12 GG-MPN cases( with 46/1 risk haplotype) 

 
 
 

12 CC-MPN cases 12 GG-MPN cases 

Homozygous risk allele Homozygous wild type allele 
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Analysis of the JAK2 risk locus in healthy individuals 
 

 We next determined if the 46/1 haplotype is unstable in the general European 

population. To do so, we obtained single-nucleotide variant data published by the 1000 

Genomes Project for a group of 60 healthy individuals of European ancestry (CEU) and 

analyzed the 300kb LD block encompassing JAK2. Among this group, there were four 

individuals homozygous for the risk allele (GG) at rs1097944, 27 individuals 

heterozygous (CG) for the risk allele and 29 individuals homozygous for the wild-type 

allele (CC). Comparing these individuals, we found there was no correlation between the 

number of single nucleotide variants and the genotype of individuals at rs10974944 when 

using a human ancestral sequence derived from the 1000 Genome Project as reference 

(Table 12). 
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Table 11 The number of single nucleotide variants in HapMap healthy individuals 
from European ancestry (CEU) obtained from 1000 genomes project 

 

CHR SNP VALUE G11 G12 G22
9 rs10974944 GENO G/G G/C C/C
9 rs10974944 COUNTS 4 27 29
9 rs10974944 FREQ 0.06667 0.45 0.4833
9 rs10974944 MEAN variant Count 715.2 808.9 732
9 rs10974944 SD 14.8 11.56 26.65
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Extended Genome Wide Association Study 
 

 We extended our MPN genome-wide association study by genotyping 237 MPN 

cases on a high-density SNP array (Illumina Omni-1 quad). We combined the genotype 

data of these MPN cases with data from 1037 shared controls genotyped using the same 

SNP array. After performing quality control, we performed a single-marker association 

test for each of 723,016 SNPs in the combined case-control dataset by use of a logistic 

regression model, including top nine significant principle components of population 

structure to adjust for stratification.  Nine SNPs at the JAK2 locus were statistically 

significantly (p value < 10-7) associated with MPN risk; these SNP were found to be in 

high linkage disequilibrium (LD) with our previously identified risk variant rs10974944 

(Table 12 and Figure 12). We did not identify any novel loci associated with MPN 

predisposition in our study, instead replicated our previous finding. We next focused our 

analysis to this extended strong LD 300kb block that contains the JAK2 risk SNPs 

(Figure 10). 93 SNP with genotype data for MPN cases and shared controls spanning this 

300kb block was available and were used for imputation and fine mapping the MPN risk 

locus. 
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Figure 12 Manhattan plot for extended MPN GWA study 
Manhattan plot of genome-wide association results obtained by logistic regression 
analysis of 723,016 SNPs in 237 MPN cases and 1,037 shared controls adjusted for 
population stratification. The x-axis is the chromosome location from 1 to 23 and y-axis 
is the negative log of the p-value for each test. The red circle is the JAK2 locus on 
chromosome 9. 

 

Chromosome location  
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Table 12 List of SNPs associated with MPN risk  
The p-values, odd ratios and linkage disequilibrium measures (calculated as r2 and D’) 
between each SNP and the previously identified MPN risk variant rs10974944. (LD 
measures were calculated based data from the 1000 Genomes Project for individuals in 
the CEU population. 

 

       

Chromosome SNP id P-value Odd Ratio r2 value DÕ
9 rs2225125 1.19E-07 2.25 0.958 1
9 rs7851556 2.51E-07 2.179 0.958 1
9 rs884132 2.84E-07 2.213 0.959 1
9 rs3780382 3.80E-07 2.181 0.715 0.903
9 rs7870694 6.02E-07 2.135 0.959 1
9 rs10815149 6.69E-07 2.111 0.959 1
9 rs7047795 7.00E-07 2.131 0.92 1
9 rs10114531 7.09E-07 2.123 0.72 0.867
9 rs12349508 7.11E-07 2.164 0.92 1
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Imputation and association test 

 

 Our next goal was to use imputation at the 300kb JAK2 locus and conditional 

analysis to determine if any of the known MPN risk alleles had either (1) a better signal 

of association or (2) an independent, second signal of association in the associated risk 

locus. The imputed SNPs were tested for association with MPN risk under a logistic 

regression model adjusted for population stratification. The analysis yielded 450 SNPs 

with p-value < 1e-05 in high LD (r2 > 0.8) with the previously identified JAK2 risk SNP 

rs10974944 (Figure 13). To refine the association signal, we conditioned the analysis of 

each imputed SNP on rs10974944 to look for additional statistical evidence of 

association. Under conditional analysis, no other SNPs showed strong evidence for 

association. Because of these findings, we focused solely on refining the signal of 

association at the JAK2 locus. The top 10 imputated and associated SNPs are presented 

in Table 13 with their functional class. Of these the top 2 SNPs were located in the 

promoter region of JAK2 gene namely, rs1887428 -position chr9: 4974530- pvalue = 

1.48e-08 and rs36051895 position chr9: 4971866- pvalue = 2.24e-08 (Table 13). The two 

SNPs that are found to be associated with Crohn’s disease138,174 and ulcerative 

colitis175,176 showed significant association signal in our data (rs10758669 associated with 

both Crohn’s disease and ulcerative colitis had p-value = 4.5e-07 and rs10975003 that 

was found to be associated with Crohn’s disease had p-value= 1.6e-5 in our analysis).  



 110 

Figure 13 Association plot for imputed and genotyped SNPs at JAK2 susceptibility 
locus 

The x-axis represents chromosome position and the y-axis is the negative of log(p-values) 
obtained from logistic regression analysis using eight principle components as covariates. 
Diamond shape are for genotyped SNPs and circles are imputed SNPs. The initial JAK2 
risk SNP rs0974944 is shown as red diamond Colors: blue = genotyped SNP with high 
LD with rs10974944 (r2 > 0.8), light blue = genotyped SNPs with moderate LD with 
rs10974944 (0.8>r2>0.5), grey = genotype SNP with weak LD with rs10974944 ( 0.5> 
r2>0.2), Orange = imputed SNP with high LD with rs10974944 (r2 > 0.8), yellow = 
imputed SNPs with moderate LD with rs10974944 (0.8>r2>0.5), pink = imputed SNP 
with weak LD with rs10974944 ( 0.5> r2>0.2), white = genotyped or imputed SNPs not 
in LD with rs10974944 Light blue lines shows the recombination rate and green lines 
show the three genes in this locus. 
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Table 13 Association results for imputed SNPs with their functional annotation 
 

 
 
 

 

 

 

Rank SNP Imputed p-value Position Functional class Gene
1 rs1887428 1.48E-08 4974519 promoter SNP JAK2
2 rs36051895 2.24E-08 4971866 promoter SNP JAK2
3 rs12349508 2.60E-08 5174222 intronic SNP INSL6
4 rs2225125 4.27E-08 4988639 intronic SNP JAK2
5 rs59384377 5.05E-08 4995034 intronic SNP JAK2
6 rs62541529 5.05E-08 4996345 intronic SNP JAK2
7 rs11999928 5.05E-08 4996743 intronic SNP JAK2
8 9-4997138 5.05E-08 4997138 intronic SNP JAK2
9 rs10120763 5.14E-08 4992911 intronic SNP JAK2
10 rs1327494 5.51E-08 4989303 intronic SNP JAK2
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Functional prediction of causal variant 
 

 To prioritize the imputed SNPs as functional or causal variants, we used the 

ENCODE integrated regulation track published in UCSC genome browser and Consite, 

an algorithm to predict transcription binding factor sites (TFBS). Of the 1034 SNPs 

present in the 300kb JAK2 analysis region (based on 1000 Genomes Project reference 

haplotypes), we successfully imputed 925 SNPs. Each imputed SNP was tested for 

association with MPN risk.  We next checked if any of these 925 SNPs lied within the 

Encode Txn Factor ChIP-seq signal regions. There were 60 SNPs (out of 925) located 

within the ChIP-seq signals or blocks, of which 18 SNP were also present in the targeted 

sequencing data for 12 GG-MPN cases. SNPs that affect the efficiency of TFBS are 

excellent candidates for GWAS hits as they are thought to be causally involved in 

complex diseases. Thus, to identify putative causal variants located in ChIP-seq signal 

regions, we used the TF binding site prediction tool Consite. We found two imputed 

SNPs that showed significant association p-values and allele-specific transcription factor 

binding as predicted by Consite. The best predicted functional variant was rs1887428, 

located in the promoter region of the JAK2 gene (position chr9: 4974530). It was the top 

ranked SNP in the association analysis (pvalue = 2.9e-11) and is in strong LD with the 

known risk SNP rs10974944 (r2 = 0.59). This SNP was predicted to affect the binding of 

transcription factor c-Fos (Figure 14). Only the risk allele (G) at rs1887428 was predicted 

to enable c-Fos binding. This suggested that the SNP mediates allele-specific JAK2 

activation or regulation.  11 of the 12 GG-MPN cases analyzed in the SOLID-RainDance 

sequencing experiment had risk allele at this locus whereas it was absent in CC-MPN 

cases. An additional SNP of interest, rs10815157 was found in an intronic region of JAK2 
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intron (position chr9: 5,099,021), with an association p-value = 1.1e-7 and strong LD 

with rs10974944 (r2 = 0.9). This SNP was predicted to affect the binding of n-Myc and 

was present in 10 of the 12 GG-MPN cases analyzed in the SOLID-RainDance 

sequencing experiment.  
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Figure 14 Predicted functional SNP rs1887428 
Consite output showing the position-weight matrix at SNP rs1887428 and the putative c-
Fos binding site 
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Allele specific JAK2 expression in MPN cases 

 

 To determine if allele-specific expression of JAK2 gene in MPN cases could be 

observed, we analyzed the MPN patients that were heterozygous at the risk SNP 

rs10974944. We assayed an exonic SNP rs2230724 that is in perfect LD with the MPN 

risk SNP rs10974944 in these heterozygous MPN cases by Sanger sequencing of 

genomic and cDNA. Figure 15 shows the representative heterozygous MPN case with 

sequence trace at the exonic SNP for genomic DNA and cDNA. We observed minute 

allelic imbalance in the sequence trace of cDNA, thus suggesting a subtle allele-specific 

difference in expression of JAK2 gene. 
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Figure 15 Allele-specific expression of JAK2 in heterozygous MPN cases 
assayed by Sanger sequencing of genomic DNA and cDNA. 

 

 

 

cDNA 

gDNA 
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3.4 Discussion 
 

 In the present chapter, we aimed to understand the mechanism by which the 46/1 

MPN risk haplotype acquires the somatic mutation JAK2V617F in cis in MPN cases. The 

finding that the JAK2V617F mutation is acquired preferentially on a 46/1 JAK2 

haplotype was unexpected and the mechanism underlying this observation remains 

unexplained. There are two hypotheses suggested: a hyper-mutability hypothesis and an 

activation hypothesis. The hyper-mutability hypothesis is similar to the phenomenon 

observed in the APC and TP53 genes168, whereby DNA sequence variations in those 

genes predispose them to somatic mutagenesis. Although the activation hypothesis 

cannot explain occurrences of JAK2 mutations directly, other acquired or inherited 

genetic variants on the 46/1 haplotype may predispose to the acquisition of JAK2 

mutations.  

 

 To dissect the two hypotheses, we carried out targeted sequencing and fine 

mapping at the disease locus JAK2. The MPN risk SNP rs10974944 is located in the 

intron of JAK2 and tags the 46/1 haplotype. This locus has an extended 300kb linkage 

disequilibrium block as determined from the HapMap individuals of European ancestry 

(CEU). We concluded that there was no haplotype-specific difference in the number of 

single nucleotide variants present in MPN cases when using the human ancestral 

sequence published by 1000 genomes project as reference. We also verified this for 

healthy individuals from 1000 genomes project CEU population and confirmed that the 

46/1 haplotype is neither unstable nor accumulates single nucleotide variants over 
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generations in MPN cases as well as in general population.  

 Recently, Jones etal found that 46/1 was overrepresented in JAK2V617F positive  

and negative ET cases, MPL exon10 mutated ET cases versus controls177. An excess of 

46/1 was also seen in JAK2 exon 12 mutated cases and these mutations preferentially 

arose on the 46/1 chromosome178. Thus the excess of 46/1 in MPL mutated cases argues 

against the hyper-mutability hypothesis.  

 

 On the other hand, a 46/1 tag SNP showed robust association with Crohn’s 

disease138, a nonmalignant disorder that is believed to have an inflammatory cause. GWA 

studies in Crohn’s disease also detected significant associations with genes encoding the 

IL-23 receptor and STAT3. These findings suggests the role of 46/1 JAK2 haplotype in 

activation of JAK2 gene in allele-specific manner that may cause different diseases. We 

observed allele-specific expression of JAK2 in MPN cases that were heterozygous at tag 

SNP rs10974944. Thus, we favor the activation hypothesis and used a combination of 

genotyping, imputation, sequencing, bioinformatics and functional annotation to fine-

map the disease locus. The discovery of functional variants is aided by a deep 

examination of genetic variation in the linkage disequilibrium (LD) block in which tag 

SNP resides. We determined the SNP(s) most likely to be functional within the fine-

mapped regions based on potential functional role using various functional annotation 

tools. We genotyped 233 MPN cases using a dense SNP genotyping platform, the 

Illumina Omni-1 quad, and combined the genotype data with shared controls from a 

public database. 93 genotyped SNPs within the 300kb JAK2 locus served as the basis 

imputation of additional untyped. We identified novel SNPs in the promoter region of 
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JAK2 gene to be associated with MPN predisposition. Using ENCODE project data and a 

transcription factor binding site prediction algorithm, we have further identified a 

candidate SNP, rs1887428, in the promoter region of JAK2 (position chr9: 4974530) that 

was predicted to affect the binding of transcription factor c-Fos. The risk allele G at 

rs1887428 was predicted to form a c-Fos binding site. It has been shown that c-fos is 

stably induced during normal hematopoietic differentiation and Jun/Fos acts as positive 

modulators of hematopoietic differentiation. Thus, we hypothesized that somatic 

mutation of the JAK2 gene in MPN cases will lead to c-Fos activation, a downstream 

target gene of the JAK-STAT pathway and that c-Fos may bind to the JAK2 promoter 

leading allele-specific JAK2 regulation. Thus, we concluded that the 46/1 haplotype does 

not seem to be hyper-mutable and may harbor functional variants supporting allele-

specific JAK2 activation.  
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CHAPTER 4 

An Evolutionary Model for the JAK2 Susceptibility Locus 

 

4.1 Introduction 
 

 As discussed in chapters 2 and 3, we and others have identified a JAK2 haplotype 

(designated as 46/1 or “GGCC”) that is strongly associated with the development of 

JAK2V617F positive MPN 153,169,171. These findings suggest a complex interplay between 

germline variations and somatic mutation at the JAK2 locus in MPN patients. The MPN 

risk SNP rs10974944 lies in an extended 300kb linkage disequilibrium (LD) block. This 

300kb region exhibits a low recombination rate. The risk allele (G) of rs10974944 is an 

ancestral allele and the frequency of homozygous GG carriers in the European population 

is 5%. In this chapter, we aimed to explore the evolution of the MPN susceptibility 

haplotype in order gain new insights into its disease association.  

 

 There are several examples of disease-associated germline variants in which the 

risk allele is ancestral allele. For example, a variant in the apolipoprotein E (APOE) gene 

associated with increased the risk of coronary artery disease and Alzheimer’s disease65,150 

carries the ancestral allele179. Similarly, it has been shown that the PPARG gene harbors 

an ancestral variant allele that influences type 2 diabetes susceptibility66. Likewise, the 

ancestral allele of a germline variant in the CAPN10 gene has been shown to increase the 

risk of metabolic syndrome180,181. These examples and others have led Rienzo and 

Hudson to develop an explicit evolutionary model: the ancestral-susceptibility model147.  
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In the present chapter, we investigated whether the MPN associated JAK2 

haplotype can be explained by the ancestral-susceptibility evolutionary model. To do so, 

we analyzed whole-genome SNP array data for a set MPN cases and shared controls from 

a public repository and focused on a broader set of SNPs within the 300kb extended 

linkage disequilibrium block encompassing JAK2. A haplotype-association test of SNPs 

in this region was able to identify the previously reported 46/1 (or “GGCC”) MPN risk 

haplotype169,171. We then reconstructed the phylogenetic tree of haplotypes observed in 

our MPN cases using chimpanzee sequence as an out-group and found that MPN risk 

haplotype forms a separate cluster from other haplotypes. In addition, the MPN risk 

haplotype showed the highest degree of sequence similarity to chimpanzee, thus 

indicating that it most likely represents an ancestral haplotype. Next, using HapMap 

Phase 3 population data, we found that the JAK2 locus, despite the lack of strong 

evidence of recent positive selection, has an excess derived allele frequency compared to 

genomic regions under neutral selection. Our findings suggest that the JAK2 MPN risk 

locus is consistent with the ancestral-susceptibility model. 
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4.2 Materials and Methods 
 

Study population and genotype data 
 

 The MPN cases, controls from public database and SNP genotype data is 

described in detail in Chapter 3 materials and methods. We used the same dataset in the 

present chapter to understand the evolution model of JAK2 risk haplotype. In total, 237 

MPN cases and 1037 controls from melanoma study genotyped in Illumina Omni-1 quad 

SNP array were used in the present study. All genotype data was processed using PLINK 

69.  For haplotype analysis, we focused on the 300kb JAK2 risk locus.  

 
Haplotype block definition and association test  
 

 The linkage disequilibrium (LD) pattern in the analysis region was determined 

using Haploview version 4.2 (http://www.broad.mit.edu/mpg/haploview/)182. The Gabriel 

protocol, which is the default method for Haploview, was applied the case-control dataset 

with an upper D' confidence interval bound of 0.98, a lower D' confidence interval bound 

of 0.70, and with 5% of informative markers required to be in strong LD 183. We next 

performed haplotype disease association tests by comparing the observed frequency of 

each haplotype in MPN cases and shared controls (significance was determined 

empirically using 1000 permutations of the case-control labels). Haploview was used to 

plot the observed LD pattern across 93 SNPs in the JAK2 region based on the analysis of 

166 MPN cases and 1,037 shared controls.  

 

http://www.broad.mit.edu/mpg/haploview/
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Phylogenetic analysis 
 

 Phylogenetic analysis was performed using PHYLIP (Phylogenetic Inference 

Package, version 3.69), a package developed by Felsenstein from the University of 

Washington184. We selected haplotype block 5 (which was identified by Haploview) for 

phylogenetic reconstruction analysis via programs available in PHYLIP. Using total of 16 

DNA sequences, 12 haplotypes (Table 3B) determined from Haploview, NCBI hg18 

human reference sequence and 3 primate sequences – Chimpanzee, Orangutan, and 

Monkey- we first determined sequence distance using the DNAdist program. Then, the 

output DNAdist was used as input for Dnapars, a DNA parsimony method. The SeqBoot 

program was used for bootstrapping with a parameter of 100. Finally, the reconstructed 

tree was drawn using outtree program.  

 
HapMap project data 
 

 We used Phase3 data from the HapMap project, which contains individuals from 

11 different populations in various geographical locations.  

 
Positive selection tests 
 

 We assessed the JAK2 locus for evidence of positive selection by performing 

several standard methods to characterize the pattern of variation within the human 

population. To evaluate our sensitivity to detect positive selection at the JAK2 locus, we 

compared our results with those found at the TYRP1 gene and neutral ancestral repeats. 

The TYRP1 gene is a melanin biosynthesis gene present in chromosome 9 that has been 
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shown to be under positive selection pressure. To determine the distribution of derived 

allele frequencies, we extracted SNPs from the JAK2 region on chromosome 9 from 

positions 4885245 to 5269610 in NCBI build 36 and from the TYRP1 gene region on 

chromosome 9 from positions 12499671 to 12884036in NCBI build 36 and determined 

ancestral alleles and minor allele frequencies from dbSNP build 131. Similarly, we 

obtained the minor allele frequencies for ancestral repeat regions. We determined if the 

minor allele of every SNP in these regions were same as the derived allele and assigned 

the DAF accordingly. We determined the distribution of derived allele frequencies for 

each of the three regions and conducted all three pairwise comparisons via a two-sided 

Wilcox test.   

To calculate the Fst score between different HapMap populations, we analyzed 

the Hapmap Phase III dataset described above. We extracted SNPs in the JAK2 region, 

the TYRP1 region, and ancestral repeats to determined allele frequencies for all extracted 

SNPs and calculated pair-wise Fst for each SNP between each pair of HapMap 

populations. We next calculated the Fst score for each SNP by averaging over all pair-

wise Fst values and compared distribution of average Fst for each region via a Wilcoxon 

test.  
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4.3 Results 

Haplotype association test 

 We analyzed 93 SNPs in the 300kb region surrounding JAK2 to identify 

haplotype blocks present in 166 MPN cases and 1037 shared controls using the 

Haploview package182. A total of 10 haplotype blocks were identified (Figure 16). Of 

these, haplotype block number 5 harbored the previously reported MPN risk variant 

(rs10974944). Using 1000 permutations, we performed haplotype association tests for 

each of the identified haplotype blocks and found block 5 to be statistically significantly 

associated with disease status (Table 15). This block contained 12 different haplotypes. 

Notably, the haplotype in block 5 that was most significantly associated with MPN in our 

study (referred to as the “MPN risk haplotype”, p-value = 5 X10-10) is identical to the 

“46/1” haplotype identified by other investigators. To understand how the haplotypes in 

block 5 were related to each other, we next turned towards phylogenetic analysis.  
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Figure 16 Haplotype plot for MPN cases and controls constructed using Haploview 
A plot of the haplotype structure observed in 166 MPN cases and 1,037 shared controls 
as constructed by Haploview. The blocks were numbered 1-8. Block 5 contains the MPN 
risk SNPs that were identified in our previous GWAS. 
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Table 14 Haplotype Association results obtained from Haploview 
 

Block Frequencies Case, Control Frequencies p-value
Block 1
TGG 0.595 0.595, 0.595 0.992
TGA 0.299 0.293, 0.300 0.7945
GTA 0.096 0.104, 0.095 0.6122
Block 2
CGTTTTATGCAT 0.361 0.313, 0.370 0.0478
CACCCCCGATAC 0.333 0.354, 0.331 0.4152
CACCTCAGGCGC 0.123 0.128, 0.122 0.7914
AGCCTCAGGCGC 0.095 0.108, 0.093 0.3811
CACCCCAGGCGC 0.031 0.031, 0.031 0.9868
CACCCCCGGCGC 0.028 0.034, 0.027 0.4686
Block 3
AT 0.781 0.761, 0.784 0.3471
GC 0.143 0.162, 0.140 0.292
AC 0.071 0.067, 0.072 0.7635
Block 4
TACCA 0.336 0.207, 0.356 1.08E-07
TATCA 0.226 0.323, 0.211 7.00E-06
CCTTG 0.215 0.196, 0.218 0.3689
TCTTA 0.161 0.203, 0.154 0.0266
TCTTG 0.033 0.040, 0.032 0.4561
Block 5
TGGGGCGCTCGCCCTATCCTT 0.301 0.227, 0.314 0.0019
TAAGACGTCTGTTCCGCTTCG 0.235 0.375, 0.215 5.03E-10
CAAAATACTCACCCTATCCTT 0.18 0.178, 0.181 0.8726
TGGGGCGCTCGCCTTATCCTT 0.051 0.048, 0.052 0.7862
CAGGGCGCTCGCCCTATCCTT 0.047 0.054, 0.047 0.5824
TGAAGCGCTCGCCCTATCCTT 0.037 0.010, 0.042 0.0053
TAAGACGTCTGTTCCGCTTTT 0.036 0.041, 0.035 0.5747
TAAAACACTCGCCCTATCCTT 0.023 0.012, 0.025 0.1736
TAGGGCGCTCGCCCTATCCTT 0.021 0.010, 0.022 0.1474
TAGGGCGTCTGTTCCGCTTCG 0.02 0.022, 0.019 0.7191
CGGGGCGCTCGCCCTATCCTT 0.014 0.003, 0.015 0.0913
TAAAATACTCACCCTATCCTT 0.011 0.010, 0.012 0.7588
Block 6
AT 0.507 0.377, 0.528 2.80E-07
GG 0.255 0.390, 0.233 1.17E-09
GT 0.238 0.233, 0.238 0.8437
Block 7
TGATAGTGCGG 0.465 0.351, 0.485 8.44E-06
CGATAGTGCGG 0.183 0.163, 0.187 0.3078
TACCGACATTA 0.111 0.168, 0.102 6.00E-04
TACCGACATGG 0.109 0.158, 0.102 0.0031
TACCGACATTG 0.057 0.086, 0.053 0.0168
CGACAGTGCGG 0.029 0.031, 0.029 0.8039
TGACGGTGCGG 0.02 0.025, 0.020 0.5526
Block Frequencies Case, Control Frequencies p-value
Block 8
CGG 0.508 0.484, 0.511 0.3543
CGA 0.195 0.199, 0.194 0.8481
CAG 0.154 0.189, 0.149 0.0568
TGG 0.142 0.127, 0.144 0.4102  
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Reconstruction of phylogenetic tree 
 

 Phylogenetic analysis is a powerful tool to study the relationship among the 

different sequences present in various haplotypes. To reconstruct a phylogenetic tree 

relating the haplotypes in block 5, we applied the parsimony method as described in 

PHYLIP version 3.6 184. For this method, we used genotype data for 21 SNPs and 12 

haplotype sequences present in block 5 (Table 15). The alleles for these 21 SNPs for 

three primates – Chimpanzee, Orangutan, and Monkey were downloaded from the UCSC 

genome browser. In addition, we chose Chimpanzee as the out-group since this would 

provide a reference by which to measure distances between the haplotypes and would 

help to determine the root of the phylogenetic tree when an actual ancestral sequence in 

not available. As shown in Figure 17, we found that the MPN risk haplotype and two 

other haplotype that had higher frequency in MPN cases compared to controls were 

clustered together and forms a separate clade (referred to as the “MPN risk haplotype 

group” below). We observed that the MPN risk haplotype group is ancestral haplotype 

compared to the other haplotypes present in higher frequency in healthy controls than 

MPN cases. We also noted that the initial risk SNP rs10974944 and SNPs found in 

present study have risk alleles that are ancestral allele. Thus, our results are most 

consistent with the ancestral susceptibility model of disease as proposed by De Rienzo 

and Hudson147.  
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Table 15 List of SNPs and haplotypes present in Block 5 

A) The list of 21 SNPs present in Block 5. MAF, minor allele frequency. 

Number Name Position MAF Alleles
1 rs2274471 4975879 0.247 T:C
2 rs4372063 4993338 0.402 A:G
3 rs10119004 5061049 0.459 A:G
4 rs10974947 5062846 0.26 G:A
5 rs2230724 5071780 0.488 A:G
6 rs1410779 5073173 0.195 C:T
7 rs3824432 5081675 0.229 G:A
8 rs3780372 5087544 0.305 C:T
9 rs7870694 5090628 0.3 T:C
10 rs17425637 5100000 0.295 C:T
11 rs3780379 5102519 0.195 G:A
12 rs3824433 5103577 0.298 C:T
13 rs884132 5104522 0.295 C:T
14 rs1410780 5130115 0.051 C:T
15 rs10115962 5130841 0.298 T:C
16 rs10815167 5140058 0.299 A:G
17 rs7029084 5164638 0.298 T:C
18 rs7040922 5164829 0.298 C:T
19 rs7047795 5171467 0.298 C:T
20 rs7045342 5173892 0.261 T:C
21 rs12349508 5174222 0.263 T:G  

 
 B) 12 different haplotypes that were used for phylogenetic tree construction 

Haplotype Block 5 Case, Control Freq P-value
Hap1 TGGGGCGCTCGCCCTATCCTT 0.227, 0.314 0.0019

MPN hap TAAGACGTCTGTTCCGCTTCG 0.375, 0.215 5.03E-10
Hap2 CAAAATACTCACCCTATCCTT 0.178, 0.181 0.8726
Hap3 TGGGGCGCTCGCCTTATCCTT 0.048, 0.052 0.7862
Hap4 CAGGGCGCTCGCCCTATCCTT 0.054, 0.047 0.5824
Hap5 TGAAGCGCTCGCCCTATCCTT 0.010, 0.042 0.0053
Hap6 TAAGACGTCTGTTCCGCTTTT 0.041, 0.035 0.5747
Hap7 TAAAACACTCGCCCTATCCTT 0.012, 0.025 0.1736
Hap8 TAGGGCGCTCGCCCTATCCTT 0.010, 0.022 0.1474
Hap9 TAGGGCGTCTGTTCCGCTTCG 0.022, 0.019 0.7191
Hap10 CGGGGCGCTCGCCCTATCCTT 0.003, 0.015 0.0913
hap11 TAAAATACTCACCCTATCCTT 0.010, 0.012 0.7588
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Figure 17 Phylogenetic tree of haplotypes in Block5. 
The 12 sequences (haplotypes) observed in block5, Chimpanzee, Orangutan, Monkey and 
NCBI36 hg18 human reference sequences obtained from the UCSC genome browser 
were used as input to PHYLIP to generate the phylogenetic tree.  
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Selection pressure at the JAK2 Locus  

 We were next interested in assessing the JAK2 locus for evidence of selection 

pressure. We compared the JAK2 locus to the TYRP1 gene, a positive control region on 

chromosome 9 that encodes a member of the melanin biosynthesis pathway and is known 

to be under positive selection. Additionally, we compared the JAK2 locus to neutral 

ancestral repeats, which are regions of the genome that are not under selection pressure 

and can serve as negative controls. We first asked if the minor allele of a SNP was 

ancestral or derived and assigned derived allele frequency (DAF) for every SNP 

accordingly. We found that for every SNP in these regions the minor allele was always 

the derived allele. Since derived alleles are recently developed, they would more likely to 

be at lower frequency then the ancestral alleles unless they are under selection. We 

observed that the JAK2 region exhibits a significantly different distribution of derived 

allele frequencies than that of both the TYRP1 region and ancestral repeats by a two-

sided Wilcoxon test (Figure 18). This result indicates that the JAK2 region has a 

relatively higher proportion of derived alleles than both ancestral repeats and the TYRP1 

region. Next, using HapMap Phase III genotype data for 11 human populations, we 

measured population differentiation Fst scores in the three test regions. Figure 19 shows 

that the Fst distribution for JAK2, TYRP1 and ancestral repeats is not significantly 

different. Hence, we can conclude that there is no evidence of the JAK2 locus being 

under recent positive selection even though it exhibits an excess derived allele frequency 

compared to the regions under neutral selections.  
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Figure 18 Distribution of derived allele frequencies at JAK2 locus, TYRP1 and 
ancestral repeats 
 

 

        



 133 

Figure 19 Distribution of Fst calculated using 11 HapMap III population comparing 
JAK2 locus, TYRP1 and ancestral repeats 

Region1 Region2 Two-sided Less Greater 
JAK2 Ancestral Repeats 3.55E-13 1.77E-13 1 

TYRP1 Ancestral Repeats 2.22E-16 1 1.11E-16 

JAK2 TYRP1 7.15E-27 3.58E-27 1 
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4.4 Discussion 

 

 Hereditary factors are known to influence susceptibility to MPN. Family members 

of affected individuals are themselves at high risk of MPN. Previous attempts to examine 

JAK2 in the familial MPN setting had led to efforts to identify such kindreds. For 

example, investigators in Sweden found a 5-to-7-fold increase of MPN in first-degree 

relatives of patients with an MPN (ref). Multiple types of MPN were observed in about 

40% of these families, suggesting that they share a common predisposing genetic lesion. 

Three recent studies, including our previous GWAS, have provided strong evidence that 

JAK2 plays a critical role in MPN susceptibility and pathogenesis.  

 
To better understand the JAK2 risk locus, we took advantage of the high-density 

SNP data to identify the risk-associated haplotypes in the region. Using HapMap Phase3 

individuals of northern European ancestry (CEU), we found that risk SNPs in the JAK2 

gene were located in an extended linkage disequilibrium spanning 300kb. We extracted 

93 SNPs in this extended LD block that were genotyped in 166 MPN cases and 1037 

shared controls for haplotype analysis. Upon analysis of these SNP with Haploview, we 

identified 10 haplotype blocks present in the 300kb region in our dataset.  Notably one of 

these haplotypes was significantly associated with MPN risk and is identical to that 

discovered by Cross et al. (referred to as the “46/1”, “GGCC” or “MPN risk 

haplotype”)153,169,171. 
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To gain a better understand of the relationship among different haplotypes 

identified in our study, we next applied phylogenetic reconstruction. Focusing 

specifically on haplotypes in block 5 of the 300kb region and using chimpanzee as the 

out-group, we found that the MPN risk haplotype and other haplotypes with higher 

observed frequencies in MPN cases than healthy controls formed a separate clade from 

the haplotypes present at higher frequencies in healthy controls. Additionally, the MPN 

risk haplotype was estimated to an ancestral haplotype compared to the modern human 

sequence and showed highest similarity to the chimpanzee sequence. These results are 

consistent with the ancestral susceptibility model proposed by Rienzo and Hudson147.  

 

Interestingly, there is growing evidence that ancestral alleles may play a role in 

cancer susceptibility185.  In one example, the ancestral allele of SNP R72P, which is 

located in the TP53 gene, is associated with breast cancer186. Similarly, the ancestral 

alleles of SNP in MDM4 and MDM2 have been identified as breast cancer-associated 

risk alleles187. Notably, the MPN risk alleles identified our GWA studies were all 

ancestral alleles and tagged the MPN risk haplotype. It has been established by various 

groups that the MPN risk haplotype acquires the somatic V617F mutation, which is 

located in the pseudokinase domain of JAK2 and leads to constitutive activation of JAK2 

and the JAK-STAT pathway. This results in aberrant cell proliferation in MPN patients. 

Although it remains unclear how the MPN risk haplotype and somatic mutation occur in 

cis, it may be possible that functional germline variant(s) in the haplotype interact with 

the somatic V617F mutation in a deleterious manner and make the development of 

clinically-manifested disease more likely. We can speculate that the deleterious 
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properties of this haplotype may have led to a decrease in its frequency over generations. 

Alternatively, we can envision that the ancestral human haplotype at JAK2 once reflected 

ancient adaptations to previous environmental conditions and thus conferred selective 

advantages.  However, with the onset of new environmental conditions, the ancestral 

alleles no may longer confer selective advantage and instead may lead to increased 

disease risk. 

 

 To understand the evolutionary pressure at JAK2, we performed tests to identify 

signatures of positive. In humans, several screens for positive selection based on variation 

within species as well as differences between chimpanzee and other primates have been 

performed. Using HapMap Phase3 population data, we confirmed that there was no 

evidence of population differentiation (as measured by Fst) present in this locus, nor 

evidence of any significantly extended homozygosity.  To evaluate the sensitivity of our 

methods to detect selection, we compared the JAK2 results with those for the TYRP1 

gene region on chromosome 9 that is positively selected. Interestingly, the JAK2 locus 

has an excess of derived allele frequencies compared to TYRP1 gene.  

 

 In conclusion, we replicated the MPN risk haplotype at JAK2 and, using 

phylogenetic tree analysis, found that MPN risk haplotype forms a separate, ancestral 

cluster that is distinct from haplotypes present in healthy individuals. Finally, although 

we found no strong evidence of recent positive selection at JAK2, we observed an excess 

of derived alleles compared to regions of the genome that are under positive selection. 
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Implications  

 The use of controls from public databases as shared controls for GWA studies can 

result in improved power by increasing the number of controls without any extra cost of 

genotyping. We can adopt this approach to the next wave of genetic studies including 

whole genome sequencing to look for disease associated rare variant(s). Based on our 

study, it appears that when designing a genetic studies using shared controls, obtaining at 

least 10 controls for every case is extremely important. To deal with errors introduced 

due to data generated from different sources, we propose including some controls to be 

genotyped or sequenced along with the cases and compare these in-house controls with 

the shared controls obtained from public database to remove variants that show different 

frequencies between the two sets of controls.  

 

 Genome-wide analysis of MPN cases allowed us to identify a germline variant in 

the JAK2 gene that predisposes to the development of JAK2-mutant MPN.  The JAK2 

haplotype structure shows extended linkage disequilibrium in individuals from European 

and Asian ancestry whereas individuals from African ancestry as observed in HAPMAP 

data shows a lower level and distinct patterns of LD. Thus, genotyping all the associated 

genotyped or imputed variants at the JAK2 locus in MPN patients from African ancestry 

may lead to the identification of the causal variant(s). Further genetic studies in JAK2 

negative MPN patients will shed light on the factors influencing the MPN phenotype. 

 

 Another theme that has emerged in the search for MPN susceptibility loci is the 

concept that JAK2 susceptibility variants predispose to other nonmalignant disorders like 
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Crohn’s disease138 and ulcerative colitis that is believed to have an inflammatory cause. 

These findings suggest the possibility of shared genetic pathways between these diseases. 

Further studies are needed to understand the biological importance of variation in the 

JAK2 gene region in relation to hematopoiesis and related disease phenotypes, including 

Crohn’s disease138, ulcerative colitis, and MPN.  

  

 The fine mapping approach aims to narrow a region of association and pinpoint 

the causal variant(s) responsible. Rather than genotyping all known SNPs within the 

candidate region to resolve causal variant(s), 1000 Genomes data can be used to impute 

all the documented variants in the region for association test. Bioinformatic tools are a 

further refinement step for the prioritization of causal SNPs. Many tools, like the 

ENCyclopedia Of DNA Elements (ENCODE), which is hosted by the University of 

California Santa Cruz (UCSC), exist to enable identification of a candidate for the causal 

variant by utilizing prediction of functional effects to prioritize SNPs for downstream 

analysis. The aim of ENCODE is to find and document all the functional elements that 

exist in the genome in both coding and non-coding regions. This database essentially 

gathers its data from wet lab experiments. It includes data from a range of experiments in 

a variety of tissues and cell types including transcription factor binding sites, chromatin 

profiling, and histone modification. Data generated from wet lab experiments potentially 

offer greater evidence of putative function compared with the current predictive 

algorithms. Thus, an integration of genotyping, imputation, sequencing, bioinformatics 

and functional annotation can be used to fine-map the disease locus to prioritize the 

possible functional or causal variant(s) in a disease locus. The SNP(s) most likely to be 
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functional within the fine-mapped regions can be further followed up in laboratories 

using functional experiments to understand the biological implication of the disease-

associated locus. Lastly, the evolutionary studies on various disease susceptibility loci 

may help us to understand the evolution of disease.  
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