	1
1st Annual MSKCC Cancer Rehabilitation Symposium	
Oncology Basics: Rehab Considerations	
for Neurology and Neurosurgery Patients	
J. J.	
Christine Connelly, MS, OTR/L Lauren Geib, PT, DPT	-
Lauren Gelb, PT, DPT May 31, 2013	
May 31, 2013	
© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.	
	_
The presenters have no conflict of interest to report	
regarding any commercial product/manufacturer that	_
may be referenced during this presentation.	
(1) Hamarid Seen Zenering Corner Gross	
•	
	1
Objectives	
Understand:	-
- Types and symptoms of primary and	
metastatic CNS tumors	
Medical treatments and procedures	
 Precautions and contraindications 	
 The cancer continuum and its impact on 	
function and rehabilitation	
Rehabilitation interventions and determine	
discharge needs	
Garner Contac	

CNS Tumor Characteristics

- Can be:
 - Benign or malignant
 - Primary or metastatic
- Prognosis depends on:
 - Type and grade of tumor
 - Location
 - Age
 - General health and functional status

CNS Tumor Risk Factors

- Hereditary diseases
- Disorders of the immune system
- Ionizing radiation
- Prior history of cancer (metastatic CNS disease)

Incidence of Oncology CNS Cases¹

< 1% chance that an individual will develop a malignant CNS tumor in his/her lifetime

Estimated	d New Cases	s for 2013	Estima	ted Deaths f	or 2013
Both Sexes	Male	Female	Both Sexes	Male	Female
23,130	12,770	10,360	14,080	7,930	6,150

Brain Tumors Primary brain tumor types • Metastatic brain tumors Medical interventions

Symptoms

Primary Brain Tumor Types • Most common primary brain tumors in adults: - Meningioma Astrocytomas - Oligodendrogliomas - Schwannomas - Primary central nervous system lymphomas (CNS lymphoma)

Primary Brain Tumors in Adults: ²	Meningiomas	High Grade (3 & 4) Astrocytomas (Anaplastic astrocytoma and glioblastoma)	Low Grade (1 & 2) Astrocytomas
Origin	Membranes lining the skull, covering the brain	Supportive cells of the brain (astrocytes)	\Rightarrow
Characteristics	Affect twice as many women as men; very rarely spread	Grow rapidly and invade nearby tissues	Slow growing
Treatment Approaches	Often curable with surgery	Surgery, radiation, and chemotherapy	Surgery or radiation
Incidence	Account for 27% of primary brain tumors	Account for about 25% of primary brain tumors	Less than 10% of primary brain tumors

Primary Brain	Oligodendrogliomas	Schwannomas	CNS Lymphomas
Tumors in Adults: ²	Oligodenarogilomas	(Acoustic neuromas)	CN3 Lymphomas
Origin	Oligodendrocytes	Schwann cells of vestibulocochlear nerve	Lymph tissue of brain, spinal cord, meninges, eye
Characteristics	Often occur in frontal or temporal lobe; can be low grade or high grade	Benign tumor and usually very slow growing	Develops in people with compromised immune systems
Treatment approaches	Surgery, radiation, and chemotherapy	Surgery and radiation	Chemotherapy and/or radiation
Incidence	Less than 3% of primary brain tumors	Account for 7% of all CNS tumors	Account for 2% of primary brain tumors
		(Monarid Stan-Emering Concer Conse

Metastatic Brain Tumors³

- 10x more common than primary brain tumors
- Cancers originating in the lung, breast, colon, kidney, along with malignant melanoma, are most likely to metastasize to brain
- 5% to 25% of cancer patients will develop brain mets
- About half of patients with brain metastases will have multiple brain lesions
- Typically associated with a poor prognosis; median survival < 6 months⁴

Metastatic Colon Cancer to Brain On Property of Page 2 Ages 2 Ag

Brain Tumors

- General symptoms / presentation
 - Headache
 - Seizures
 - Nausea and vomiting
 - Neurological dysfunction (hemiparesis, visual field cut, sensory loss, aphasia)
 - Cognitive / behavioral changes
 - Site specific focal symptoms

Medical Interventions for Brain Tumors

- Surgical procedures
 - Biopsy
 - Craniotomy
 - VP shunt
 - Ommaya reservoir
- Radiation
- Chemotherapy
- Corticosteroids

Surgery

- Types
 - -Biopsy
 - Surgical removal of a sample of tumor tissue
 - Craniotomy
 - Incision made in skull
 - Removal of skull (bone flap) overlying tumor
 - Resection of tumor
 - Replacement of bone flap

Surgery

- · Goals:
 - Provide a tumor sample to establish an accurate diagnosis
 - Remove as much of the tumor as possible
 - Relieve seizures

Ventriculoperitoneal Shunt (VP Shunt) Shunt placed to relieve blockage or excess fluid Relieve intracranial pressure

Ommaya Reservoir • Used to: - Obtain samples of CSF used to find cancer cells or infection in lining of brain - Deliver chemotherapy and antibiotics into the CSF

Radiation Therapy Types: Whole Brain Radiation Therapy (WBRT) Stereotactic Radiation Therapy Intensity Modulated Radiation Therapy (IMRT) Image-Guided Radiation Therapy (IGRT) Indications: After surgery to destroy any remaining tumor cells To treat tumors that cannot be surgically removed and for metastatic brain tumors To relieve symptoms

Radiation Therapy • Possible side effects: - Fatigue - Nausea - Vomiting - Decreased cognition and memory - Radiation necrosis

Corticosteroids (Decadron)

- Decrease edema around the tumor
- Improve neurological symptoms
- Help relieve pre-surgery symptoms such as headache
- Used following surgery or radiation
- Used for recurrent or metastatic brain tumors

Corticosteroids (Decadron)

- · Common side-effects
 - Proximal muscle weakness / wasting
 - Osteoporosis
 - Weight gain
 - Hyperglycemia
 - GI problems
 - Insomnia and mood changes
 - Decreased immune response

Spinal Cord Disease

Spinal Cord Disease

- Characteristics and symptoms
- Spine tumor types
- Medical interventions and general precautions

Spine Tumor Characteristics

- Growing tumors cause spinal cord compression
- Location of the lesion in spinal cord determine symptoms
- Severity of symptoms does not correlate with tumor size
- Primary tumors in spinal cord are rare compared to brain (1 spine: 4 brain)⁵
- Majority of spinal tumors are metastatic

Metastatic Spine Tumors

- 30-70% of patients with skeletal mets will have vertebral involvement⁷
- Systemic treatments have improved survival leading to an increased number of metastases
- Breast (women), lung (men), prostate, and thyroid and kidney most common origins
- · Paravertebral involvement and pathological fracture cause pain

Goals

function

• Frequency of location of resected metastatic tumors from highest to lowest are thoracic, lumbar, cervical and sacral10

Medical Intervention Treatments · Local therapies: Alleviate pain Local tumor control Radiation and surgery • Systemic therapies: · Mechanical stability · Decompress spinal cord Chemotherapy Improve neurological Medications · Improve quality of life

Medical Intervention NOMS framework¹¹ Neurologic Myelopathy Functional radiculopathy • Degree of epidural spinal cord compression – Oncologic Tumor histology • Radiation or chemosensitivity - Mechanical instability - Systemic disease and medical co-morbidity

Surgery

Surgical Considerations

- CSF leak
- Wound dehiscence
- Bracing
- · Spine precautions

Chemotherapy

- Systemic therapy used to slow the growth of metastatic spine tumors and reduce risk of vertebral fractures
- Treats metastatic disease typically arising from lymphoma, myeloma, breast and prostate CA

Medications

- Narcotics/Pain medications (Percocet)
- Corticosteroids (Decadron, Dexamethasone)
- NSAIDS, anti-inflammatory (Toradol, Naproxen, Celebrex, Voltaren, Mobic)
- Muscle relaxors (Baclofen, Valium)
- Neurogenic pain meds (Lyrica, Neurontin)

Craniotomy Precautions

- · HOB at 30 degrees
- · Avoid bending forward
- Avoid strenuous activities
- · No isometric exercises
- Avoid Valsalva maneuver
- No patient helper / trapeze
- Monitor for activities that increase pain, headache

Spine Precautions

- No bending, lifting, twisting (BLT)
- 5 lb lifting limit
- No bilateral horizontal adduction
- · No resistance for MMT or ther-ex
- · Range of motion restrictions
- No trapeze
- Log roll
- Monitor for activities that increase pain, headache or appearance of clear fluid

Rehab Implications for Patients with CNS Tumors

- Neurological impairments
 - Cognition, speech, vision, strength, spasticity, coordination, sensation, neglect, bowel/bladder
- Functional impairments
 - Ambulation / mobility, balance,
 ADL performance

Goal Setting for Patients with CNS Tumors CONS Tumors Considerations: Functional limitations / deficits Medical intervention / treatment options Progression across the cancer continuum Patient centered goals Family / caregiver support Quality of Life

Physical Therapy for Patients with CNS Tumors

- · Gait / stair training
- Neuromuscular Reeducation (NDT, PNF, Neuro-IFRAH ®)
- Vestibular rehab
- · Transfer training
- Therapeutic exercises Education of crani /
- DME training
 - Family education / training
 - · Pulmonary hygiene
 - Positioning
 - · Orthotic training
 - Education of crani / spine precautions

PT Goal Setting in Acute Care

- Patients with brain tumors
 - Goal 1: Patient will ambulate at least 250 ft wearing a R AFO with RW and min assist x 1 to ambulate in home safely.
 - Goal 2: Patient will demonstrate good dynamic standing balance to ambulate on level and uneven surfaces safely.

PT Goal Setting in Acute Care

- Patients with spine tumors
 - Goal 1: Patient will perform all bed mobility maintaining spine precautions with modified independence to prep for bed mobility safely.
 - Goal 2: Patient will demonstrate minimal assist with sliding board transfer between bed and wheelchair with caregiver to decrease risk for skin breakdown.

123	Charles Services	
~		

Occupational Therapy for Patients with CNS Tumors

- · Neuromuscular Reeducation (NDT, PNF, Neuro-IFRAH®)
- Family education / training
- · Transfer training
- Cognition
- · ADL training
- Therapeutic exercise
- Positioning
- Bowel / bladder training Splint fabrication
- AE/DME training · Energy conservation
- · Education of crani / spine precautions
- · Psychosocial support

OT Goal Setting in Acute Care

- Patients with brain tumors:
 - Goal 1: Pt will be educated in memory compensation strategies to complete multi-step kitchen task with Mod I and min VC to increase ADL performance.
 - Goal 2: Pt will don shirt with Min A demo modified single-armed dressing technique to increase participation in ADLs.

OT Goal Setting in Acute Care

- Patients with spine tumors:
 - Goal 1: Pt will perform all surface transfers with Mod I and AD prn while maintaining spine precautions to increase safety with OOB ADLs.
 - Goal 2: Pt will complete LE dressing with Mod I using AE prn to maintain spine precautions and increase indep with ADLs.

Discharge Planning

- Consider functional status, prognosis, rehab potential, family/caregiver support, home environment, patient's goals
- · Home discharge:
 - Determine DME needs
 - Level of assistance needed
 - Therapy needs (home, outpatient)
- Inpatient discharge settings:
 - Rehab hospital (SAR, acute)
 - Nursing home (SNF)
- Palliative care (hospice)

Evidence Based Practice¹²

- Use of vestibular adaptation exercises after acoustic neuroma resection results in:
 - Improved postural stability both in stance and during ambulation
 - Decreased perception of disequilibrium during early stage of recovery

Evidence Based Practice¹³

- Support for inpatient acute rehabilitation for patients with brain tumors:
 - Patients with brain tumors have functional gains comparable to those of patients with stroke in acute rehab setting
 - Patients with brain tumors had a shorter length of stay than stroke patients
 - Both groups had high rates of discharge to the community

Evidence Based Practice

- Support for inpatient acute rehabilitation for patients with spine tumors:
 - 84% of patients with neoplastic spinal cord compression (SCC) were discharged home from rehab; 75% of those patients maintained their mobility, gait and transfer abilities for >/= 3
 - Patients with metastatic tumor related SCI demonstrated improved FIM scores (62 to 84) after stay at inpatient rehab
 - Patients with SCC due to cancer have similar functional outcomes as patients with traumatic SCI in the rehab setting 16
 - Patients with neoplastic SCC have significantly shorter length of stay than traumatic SCI17

Conclusion

- · CNS tumors are statistically very rare, but have profound effects on a patient's function and QOL
- Physical and occupational therapists must consider and educate patients on precautions and activities that may lead to post-treatment complications
- · It is important to consider a patient's stage of disease and prognosis when setting goals
- Physical and occupational therapists play a vital role in restoring function and QOL in the oncology neurology/neurosurgical patient

References

- American Cancer Society. What are the key statistics about brain and spinal cord tumors in adults? Available at:
- http://www.cancer.org/cancer/braincnstumorsinadults/detailedguide/brain-and-spinal-cord-tumors-in-adults-key-statistics. Accessibility verified February 13, 2013. Memorial Sloan-Kettering Cancer Center. Types of Primary Brain Tumors. Available at: http://www.mskcc.org/cancer-care/adult/brain-tumors-primary/about-primary-brain-tumors. Accessibility verified February 6, 2013.
- Memorial Sloan-Kettering Cancer Center. About Metastatic Brain Tumors. Available at: http://www.mskcc.org/cancer-care/adult/brain-tumors-metastatic/about-metastatic-brain-tumors. Accessibility verified April 11, 2013.

 Eichler AF, MD, MPH, Lu-Emerson C, MD. Brain Metastases. Continuum Lifelong Learning Neurol. 2012; 18(2): 295-311.
- The American Association of Neurological Surgeons. Conditions we treat: Spine Conditions, Lumbar tumors . Center For Neuro and Spine. http://www.centerforneuroandspine.com/Conditions/Spine-Conditions/Lumbar-Spine-Conditions/Lumbar-Tumors/default.aspx. Accessed February 6, 2013.
- McKinley, W. Rehabilitation of Patients with Spinal Cord Dysfunction in the Cancer Setting. In: Stubblefield MD, O'Dell MW. Cancer Rehabilitation: Principles and Practice. New York, NY: Demos Medical Publishing; 2009:

References

- Marquardt G, Gerlach R, Seifert V. Spinal Tumours. In: Lumenta CB, Di Rocco C, Haase J and Mooij JJA, eds. *European Manual of Medicine: Neurosurgery.* Berlin, Heidelberg: Springer; 2010: 353-371.
- Stubblefield MD. Rehabilitation of the Cancer Patient. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. *Cancer: Principles and Practice of Oncology.* 9th ed. Philadelphia, Pa: Wolters Kluwer/Lippincott Williams & Wilkins; 2011: 2500-2522.
- Stubblefield MD, O'Dell MW. Cancer Rehabilitation: Principles and Practice. New York, NY: Demos Medical Publishing; 2009.
- Feiz-Erfan I, Rhines LD, Weinberg JS. The Role of Surgery in the Management of Metastatic Spinal Tumors. Seminars in Oncology. 2008; 35(2); 108-117.
- Bilsky MH. Principles of neurosurgery in cancer. In: Stubblefield MD, O'Dell MW. Cancer Rehabilitation: Principles and Practice. New York, NY: Demos Medical Publishing; 2009: 81-86.
- 12. Herdman SJ, Clendaniel RA, Mattox DE, Holliday MJ, Niparko JK. Vestibular
- Herdman S., Clendarliei RA, Mattox DE, Holinday MJ, Niparko JA. Vestibular adaptation exercises and recovery: Acute stage after acoustic neuroma resection. Otolaryngology-Head and Neck Surgery. 1995; 113: 77-87.
 Huang ME, Cifu DX, Keyser-Marcus L. Functional outcome after brain tumor and acute stroke: a comparative analysis. Arch Phys Med Rehabil. 1998; 79: 1386-1390.

References

- McKinley WO, Conti-Wyneken AR, Vokac CW, Cifu DX. Rehabilitative Functional Outcome of Patients With Neoplastic Spinal Cord Compression. Arch Phys Med Rehabilitation. 1996; 77: 892-895.
- 15. Parsch D, Mikut R, Abel R. Postacute management of patients with spinal cord injury due to metastatic tumour disease: survival and efficacy of rehabilitation. Spinal Cord. 2003; 41: 205-210.
- McKinley WO, Seel RT, Hardman JT. Nontraumatic spinal cord injury: incidence and epidemiology and functional outcomes. Arch Phys Med Rehabil. 1999; 80: 619-623.
- Guo Y, Young B, Palmar JL, Mun Y, Bruera E. Prognostic Factors for Survival in Metastatic Spinal Cord Compression. A Retrospective Study in a Rehabilitation Setting. American Journal Phys Med Rehabilitation. 2003; 82: 665-668.

Additional References

- American Brain Tumor Association. Brain Tumor Facts. Available at: http://www.abta.org/news/brain-tumor-fact-sheets/. Accessibility verified April 11, 2013.
- American Cancer Society. Can brain and spinal cord tumors in adults be found early? Available at: http://www.cancer.org/cancer/braincnstumorsinadults/detailedguide/brain-and-spinal-cord-tumors-in-adults-detection. Accessibility verified April 11, 2013.
- American Cancer Society. What are the risk factors for brain and spinal cord tumors? Available at:
- http://www.cancer.org/cancer/braincnstumorsinadults/detailedguide/brain-and-spinal-cord-tumors-in-adults-risk-factors. Accessibility verified April 11, 2013.
- Biering-Sorensen F. Treatment and Rehabilitation of Patients with Spinal Cord Lesions. In: Lumenta CB, Di Rocco C, Haase J and Mooij JJA, eds. *European Manual of Medicine: Neurosurgery*. Berlin, Heidelberg: Springer; 2010: 433-438.
- Hammack JE. Spinal Cord Disease in Patients with Cancer. American Academy of Neurology. 2012; 18 (2): 312-327.

Additional References

- Lis E, Mazzone C. Principles of spine imaging in cancer. In: Stubblefield MD, O'Dell MW. Cancer Rehabilitation: Principles and Practice. New York, NY: Demos Medical Publishing; 2009: 123-148.

 Mayo Clinic. Spinal Tumor Risk Factors. Available at: http://www.mayoclinic.com/health/spinal-tumor/DS00594/DSECTION=risk-factors. Accessibility verified April 11, 2013.
- Stubblefield MD, Bilsky MH. Barriers to Rehabilitation of the Neurosurgical Spine Cancer Patient. *Journal of Surgical Oncology*. 2007; 95: 419-426.

Manual Sun-Karels Canar Canar
