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Abstract

Survival is poor for patients with metastatic cancer, and it is vital to examine

new biomarkers that can improve patient prognostication and identify those who

would benefit from more aggressive therapy. In metastatic prostate cancer, two

new assays have become available: one that quantifies the number of cancer cells

circulating in the peripheral blood, and the other a marker of the aggressiveness

of the disease. It is critical to determine the magnitude of the effect of these

biomarkers on the discrimination of a model-based risk score. To do so, most

analysts frequently consider the discrimination of two separate survival models:

one that includes both the new and standard factors and a second that includes

the standard factors alone. However, this analysis is ultimately incorrect for

many of the scale-transformation models ubiquitous in survival, as the reduced

model is misspecified if the full model is specified correctly. To circumvent this

issue, we developed a projection-based approach to estimate the impact of the

two prostate cancer biomarkers. The results indicate that the new biomarkers
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can influence model discrimination and justify their inclusion in the risk model;

however, the hunt remains for an applicable model to risk-stratify patients with

metastatic prostate cancer.

Keywords: Biomarkers; Concordance probability; Nested models; Projection; Prostate

cancer

1 Introduction

Survival risk models are used to assess the risk of disease onset for an individual in the

general population or the risk of disease progression or death for a patient already

diagnosed with an illness. The search to identify new risk factors and biomarkers

to improve survival risk models is ubiquitous in clinical research. For example in

oncology, a large research effort is underway to evaluate patient risk as a function

of molecular alterations within the tumor cell as assessed via a biopsy or peripheral

blood. An important research question is whether this newly acquired cellular information

impacts survival risk, after accounting for existing clinical measures and laboratory

tests obtained during routine practice.

In this work, the interest is focused on the added value of two new blood-based

biomarkers, circulating tumor cells (CTC) and serum testosterone, in men with

metastatic prostate cancer. Contemporary assays, such as CTC and serum testosterone,

are typically more expensive to administer than the conventional assays used to assess

patient risk in this population. To justify their routine use within a risk model,

evidence beyond association metrics with survival is required. In this paper, we
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seek a second level of evidence, specifically examining how the incorporation of these

factors into the risk model influences the concordance probability.

Data from a randomized clinical trial (Saad et al., 2015) of men treated on one

trial arm with an androgen receptor targeted therapy, a key molecular target in

the metastatic prostate cancer population, was used to evaluate the added value

of CTC and serum testosterone. The primary endpoint of the clinical trial was

overall survival, and the median survival time was only 31 months. This relatively

short survival accentuates that accurate baseline risk determination is critical in the

patient population. Historically, the prostate specific antigen (PSA) biomarker, the

metastatic site where the cancer has spread (bone or soft tissue), and the ability of

the patient to perform routine tasks (ECOG status), have been employed to assess

patient risk in the metastatic prostate cancer population. For the current analysis,

these conventional risk factors along with two new risk factors, circulating tumor

cells (CTC) and serum testosterone, were incorporated into a proportional hazards

risk model.

A summary of the results from 631 men with complete risk factor data is provided

in Table 1. All the risk factors, including CTC and serum testosterone, were prognostic

for survival. To assess the adequacy of the proportional hazards assumption necessary

for the interpretation of the model results, a smoothed relationship between the scaled

Schoenfeld residuals and time is plotted for each risk factor (Grambsch and Therneau,

1994). A nonconstant slope in these graphs indicates nonproportionality. The residual

plots and the p-value generated from a null test statistic of a constant slope are

provided in Supplemental Figure S1. To achieve the proportional hazards specification

in this enhanced model, the continuous risk factors, PSA, testosterone, and CTC were
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all transformed to a square root scale. In addition, CTC was transformed into two

constructed variables based on whether the patient’s CTC value exceeded 10. The

diagnostic results of this model specification are consonant with the proportional

hazards assumption across all risk factors.

Although all risk factors were found prognostic, with 248 events (deaths) in

the data, it is not highly informative to determine that all the log relative risk

parameters are non-zero. It is often the case that after this association analysis,

a second-level analysis is performed to better understand the quality of the risk

model. Common families of metrics used for this evaluation include calibration,

discrimination, explained variation, and likelihood based. This work will focus on

the concordance probability, a measure of discrimination that gauges the extent

the model-based baseline risk score separates long-term survivors from short-term

survivors. A high estimate of the concordance probability is an indication that the

risk score can reliably determine patients who are at high risk and perhaps require

more aggressive treatment.

The key question we address is how to evaluate the influence of the new factors, and

more generally the influence of any subset of factors, on the concordance probability

in a survival model. We will use the metastatic prostate cancer example throughout

the paper to illustrate the limitations of a common approach to this assessment and

to propose a new solution.
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2 Concordance Probability

For survival models, a popular discrimination measure is the concordance probability.

An early definition of the concordance probability, modified to reflect the analysis

horizon τ , is

Pr[St(X1,Z1) < St(X2,Z2)|T1 < T2, T1 < τ ]

(Pencina and D’Agostino, 2004), where T is the survival time, X represents a p-

dimensional vector containing the conventional risk factors, Z is a q-dimensional

vector of new risk factors, and St(X,Z) denotes the survival function Pr(T >

t|X,Z). Throughout the paper, upper case letters represent random variables, lower

case their realizations, and bold type indicate vectors. In addition, it is assumed that

at least one conventional risk factor is continuous. The concordance probability is an

expression of the concordance between the survival times and the predicted survival

probability beyond a given time t. The concordance probability ranges between 0.5

and 1.0, with the value 1 indicating perfect concordance.

The survival function St(X,Z) is frequently model-based. The most common

risk models applied in clinical research are scale transformation models (Cheng et al.,

1995). The scale transformation model is represented as

m(T ) = −βTX − γTZ + ϵ,

where m(T ) is an unknown monotone increasing function on [0, τ ], with m(0) = −∞

and m(τ) = M < ∞. The linear combinations (βTX,γTZ) are risk indices, and ϵ is

a random error with known distribution independent of (X,Z).
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The scale transformation model may be rewritten as

g(ST (X,Z)) = m(T ) + βTX + γTZ,

with ϵ = g(ST (X,Z)) and g(·) is a monotone decreasing function. This alternative

representation follows from the probability integral transform of S, a uniform (0, 1)

random variable, leading to the distribution of ϵ through the specification of g.

Popular examples of scale transformation models include (Dabrowska and Doksum,

1988):

1. Proportional hazards : g(S) = log{− log(S)}

2. Proportional odds : g(S) = − log{S/(1− S)}

3. Generalized probit: g(S) = Φ̄−1(S)

where Φ̄ is the standard normal survival function.

Scale transformation models contain two simplifying properties. First, there is

no loss in information by considering the index survival function ST (β
TX + γTZ),

and second, the survival function is a monotonic decreasing function of the risk index

βTX + γTZ. As a result, the concordance probability may be rewritten as

κ(τ) = Pr[βTX1 + γTZ1 > βTX2 + γTZ2|T1 < T2, T1 < τ ], (1)

which is the consensus version of how the survival concordance probability is defined

today (Uno et al., 2011).

The most widely used estimate of the concordance probability is the concordance

index (Harrell et al., 1982, 1996). Uno et al. (2011) demonstrated that due to

censoring, the concordance index (c-index) is not a consistent estimate of κ(τ) and
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incorporated an inverse probability censoring weight correction. The weighted c-index

is computed as

Dn(β̂, γ̂, Ĝ; τ) =∑
i,j

I(β̂
T
xi + γ̂Tzi > β̂

T
xj + γ̂Tzj) δiI(yi < yj, yi < τ){Ĝ(yi)}−2

∑
i,j

δiI(yi < yj, yi < τ){Ĝ(yi)}−2
, (2)

where
∑
i,j

denotes a double sum taken over the n observations in the sample, Y =

min(T,C), δ = I(T < C), and C represents the underlying random censoring

time with survival function G(·). The parameter estimates (β̂, γ̂) from the scale

transformation model may be computed using Cheng et al. (1995), and the Kaplan-

Meier estimate of the censoring survival distribution may be used to estimate G(y)

under the assumption that C ⊥⊥ (T,X,Z). The weighted c-index can be generalized

to include conditional independence (C ⊥⊥ T |X,Z), by replacing the Kaplan-Meier

estimate with a conditional survival estimate of G(y|x, z) (Gerds et al., 2013; Gerds,

2023). When the scale transformation model is properly specified, Uno et al. (2011)

provide conditions where the weighted c-index statistic is consistent and asymptotic

normal.

An alternative estimate of κ(τ) is the concordance probability estimate (Gönen

and Heller, 2005; Zhang and Shao, 2018),

Kn(β̂, γ̂, θ̂(β̂, γ̂; τ), π̂; τ) =

∑
i,j

I(β̂
T
xi + γ̂Tzi > β̂

T
xj + γ̂Tzj) θ̂ijij(β̂, γ̂; τ)

n(n− 1)π̂(τ)
, (3)

where π(τ) = Pr[T1 < T2, T1 < τ ] is the marginal precedence probability and

θ1212(β,γ; τ) =

Pr[T1 < T2, T1 < τ |βTX1 = βTx1,β
TX2 = βTx2,γ

TZ1 = γTz1,γ
TZ2 = γTz2] (4)
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is the model precedence probability. Going forward, we will simplify the notation and

write θ̂ for θ̂(β̂, γ̂; τ) in the argument of the concordance probability estimate.

The concordance probability estimate (CPE) relies on the choice of the scale

transformation model used to estimate the precedence probability. For the scale

transformation models introduced earlier in this section, the precedence probabilities

are

• Proportional hazards :

θ1212(β,γ; τ) =
1− Sτ (x1, z1)Sτ (x2, z2)

1 + exp
[
βTx12 + γTz12

]
• Proportional odds :

θ1212(β,γ; τ) = exp
[
βTx12 + γTz12

]
×{

βTx12 + γTz12 + log
(
1−Sτ (x2,z2)
1−Sτ (x1,z1)

)}
+
(
1− exp

[
βTx12 + γTz12

])
(1− Sτ (x2, z2))(

1− exp
[
βTx12 + γTz12

])2
• Generalized probit:

θ1212(β,γ; τ) = ΦD,M

[
βTx12 + γTz12√

2
, Φ̄ (Sτ (x1, z1))

]

where x12 = x1−x2, z12 = z1−z2, and ΦD,M represents a bivariate standard normal

distribution function, where the first component is the difference of two independent

standard normals and the second component is a marginal standard normal. The

proportional hazards and proportional odds models are specific cases of the Pareto

family of models. However, as studied in Brentnall and Cuzick (2018), the precedence

probability in the general Pareto model cannot be derived analytically.

The model precedence probability estimate is a function of (β̂, γ̂, Ŝτ (X,Z)).

Estimates of (β̂, γ̂) may be computed using Cheng et al. (1995). With g assumed
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known, estimation of the model survival function is completed with the estimation

of m(τ), which at the single point τ , is attained as the solution to the estimating

equation (Cheng et al. 1997)

∑
i

{
I(yi ≥ τ)

Ĝ(τ)
− g−1[m(τ) + β̂

T
xi + γ̂Tzi]

}
= 0.

The CPE in (3) is a consistent, asymptotic normal estimate of κ(τ) when the scale

transformation model is properly specified (Devlin and Heller, 2021). Its consistency

is apparent by applying Bayes Theorem in (1) to obtain

κ(τ) = [π(τ)]−1

∫ ∫ ∫ ∫
βT x12+γT z12>0

θ1212(β,γ; τ)dF (βTx1,β
Tx2,γ

Tz1,γ
Tz2). (5)

The CPE does not require an inverse probability censoring weight, making it

less sensitive to censoring in the right tail than the weighted c-index, and is more

efficient than the weighted c-index under the correct model specification. Thus,

the CPE is advantageous to apply under proper model specification. However, if

the enhanced model is incorrectly specified, the weighted c-index combined with the

partial rank estimate (Section 3.3), is more robust to model misspecification and has

greater efficiency than the CPE. These assertions are supported by the simulations

in Section 4.

3 Impact of New Factors on the Concordance Probability

3.1 Nested Models Approach
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To determine the impact of a new set of factors on the concordance probability, the

current practice is to use the estimates from nested scale transformation models

m(T ) = −βTX − γTZ + ϵ (6)

m∗(T ) = −β∗TX + ϵ∗ (7)

and calculate the difference in the estimated concordance probabilities computed

from the enhanced model (6) and the reduced model (7). The expectation is that the

addition of new factors to the model will improve the understanding of patient risk.

For the metastatic prostate cancer data, the results from the enhanced model

were presented in Section 1. The results for the reduced proportional hazards model,

based on the conventional risk factors, PSA, visceral disease, and ECOG status, are

presented in Table 2. The conventional risk factors remain prognostic; however, the

proportional hazards assumption does not hold for visceral disease, as illustrated in

Supplemental Figure S2. This scenario, where the proportional hazards assumption is

satisfied in the investigator-constructed enhanced model, but violated in the reduced

model is unsurprising, since proportional hazards models are, in general, non-nested

(Hougaard, 1986; Fine, 2002). Thus, a limitation of comparing estimates of the

concordance probabilities from nested scale transformation models is the structural

misspecification of the reduced model due to the non-nesting property of proportional

hazards models. This misspecification will affect the estimated concordance probability

from the reduced model using either the weighted c-index or CPE and, ultimately,

the interpretation of the impact of circulating tumor cells and serum testosterone on

this discrimination measure.

The non-nesting argument for the proportional hazards assumption may be generalized
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to the family of scale transformation models. If the heterogeneity due to Z in

the enhanced scale transformation model (6) is ignored by incorporating γTZ into

the error term, the reduced model is written as (7), where ϵ∗ is a location-scale

transformation of ϵ−γTZ. In general, the distribution of ϵ∗ is not the same as ϵ, and

hence the scale transformation family models are nonnested. The generalized probit

model is an exception if the distribution of (X,Z) is multivariate normal.

A measure for the impact of the new factors to the concordance probability, based

on the nested models in (6) and (7), is

Pr[βTX1+γTZ1 > βTX2+γTZ2|T1 < T2, T1 < τ ]−Pr[β∗TX1 > β∗TX2|T1 < T2, T1 < τ ].

This metric is a function of the relationship between the new risk factors Z and

survival time T in the presence of the conventional risk factors X and the degree

of misspecification of the reduced model. It is clearly undesirable for the influence

of the new factors on the concordance probability to be a function of the level of

misspecification. Thus, we will not proceed further with this nested model approach.

In the next two sections, alternative approaches that do not rely on the misspecified

reduced model but instead use a projection approach, are provided to compute

the impact of the new factors on the concordance probability. In Section 3.2, the

methodology is applied when the error distribution for ϵ from a scale transformation

model is known, and Section 3.3 considers the case that the error distribution from

this model is unknown. Estimation for the concordance probability and inference for

the impact parameter are carried out separately depending on the error distribution

information.

3.2 Error Distribution Known
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To develop a concordance probability measure that ignores the heterogeneity due

to the new factor risk index γTZ, the enhanced model precedence probability (4) is

projected onto the two-dimensional space spanned by the random variables (βTX1,β
TX2),

θ
[P ]
12 (β; τ) = E

[
θ1212(β,γ; τ)

∣∣βTX1,β
TX2

]
, (8)

which as a direct result of iterated expectation

θ
[P ]
12 (β; τ) = Pr[T1 < T2, T1 < τ |βTX1,β

TX2].

Through this projected precedence probability, the concordance probability, ignoring

the new factors in the enhanced model, is defined in an analogous way to (5) as

κ[P ](τ) = [π(τ)]−1

∫ ∫
βT x12>0

θ
[P ]
12 (β; τ)dF (βTx1,β

Tx2). (9)

which equals

Pr[βTX1 > βTX2|T1 < T2, T1 < τ ]. (10)

The concordance probability from the enhanced model κ(τ), and the concordance

probability for the conventional factor risk index alone κ[P ](τ), may each be interpreted

as projections. κ(τ) is proportional to the projection of the random variable I(T1 <

T2, T1 < τ) onto the half-space βTX12+γTZ12 > 0 and κ[P ](τ) is proportional to the

projection of this random variable onto the half-space βTX12 > 0. The difference in

the concordance probabilities leads to a measure of the impact of the new factors in

the enhanced model

ξ(τ) = κ(τ)− κ[P ](τ). (11)

The efficiency of the CPE relative to the weighted c-index when the error distribution

in (6) is known, suggests that the estimated impact parameter be computed as

ξ̂(τ) = Kn(β̂, γ̂, θ̂, π̂; τ)−K [P ]
n (β̂, θ̂[P ], π̂; τ),
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where Kn(β̂, γ̂, θ̂, π̂; τ) is expressed in (3) and

K [P ]
n (β̂, θ̂[P ], π̂; τ) =

∑
i,j

I[β̂
T
xi > β̂

T
xj]θ̂

[P ]
ij (β̂; τ)

n(n− 1) π̂(τ)
.

The projected precedence probability θ
[P ]
12 (β; τ), a conditional expectation (8), is

estimated using kernel smoothing

θ̂
[P ]
12 (β̂; τ) =

∑
k,l

θ̂12kl(β̂, γ̂; τ)ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl)∑

k,l

ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl)

,

where ϕh(u, v) is a kernel function with bandwidth h. The justification for the

projected precedence probability estimate is provided in Theorem 1.

Theorem 1:

Let ϕh(u, v) represent a kernel function, symmetric about zero, with bandwidth h.

Assume as n → ∞, h → 0 and nh2 → ∞. Then

θ̂
[P ]
12 (β̂; τ)

p→ Pr(T1 < T2, T1 < τ |βTX1,β
TX2)

Theorem 1 is derived in the appendix and follows the conventional asymptotic result

using a Nadaraya-Watson estimator (Simonoff, 1996).

The asymptotic distribution of ξ̂(τ) is developed to obtain its asymptotic variance

and to produce a 95% confidence interval for ξ(τ). These inferential measures will be

applied in Section 5 to complete the prostate cancer data analysis. The asymptotic

distribution for the CPE impact estimate is provided in Theorem 2 and is derived in

the appendix.

Theorem 2:
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Assume the scale transformation model based on the covariates (x, z) is properly

specified, and the new factors are associated with survival time (γ ̸= 0). Then

n1/2[Kn(β̂, γ̂, θ̂, π̂; τ)−K [P ]
n (β̂, θ̂[P ], π̂; τ)− ξ(τ)]

D→ N(0, VK). (12)

The result is derived by decomposing (12) into components and demonstrating

the asymptotic normality of each component. An analytic estimate of the asymptotic

variance VK via the sum of these components is complex, and a bootstrap estimate

of the asymptotic variance and confidence interval will be applied (Kosorok et al.,

2004).

3.3 Error Distribution Unknown

In the previous section, the impact of the new factors on the concordance probability

was developed under the assumption that the error distribution was known. The

working premise is that the analyst has carefully evaluated the data and chosen from

the family of enhanced scale transformation models in Section 2. However, there will

be times when even a close approximation will not be suitable.

For these data, estimates of (β,γ) may be derived, without specifying an error

distribution for ϵ, by using the partial rank methodology (Khan and Tamer, 2007).

The partial rank estimates (PRE) of (β̂, γ̂) are obtained from the objective function

Jn(η,γ) = argmax
(η,γ)

[n(n− 1)]−1
∑
i

∑
j

δjI[yi > yj]I[β
Txi + γTzi < βTxj + γTzj],

where to resolve an identifiability issue in this maximization, the first component

of β is set to one, and β̂ = (1, η̂T )T . Khan and Tamer (2007) prove that, under
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regularity conditions, which includes that there is at least one continuous covariate

with a non-zero coefficient, (η̂, γ̂) are asymptotically normal and (β̂, γ̂) are consistent

estimates of the rescaled parameters (β,γ) in (6). However, the discontinuity in the

objective function can result in instability in this estimation process. To stabilize the

algorithm, a smooth version of the objective function is employed

J̃n(η,γ) = argmax
(η,γ)

[n(n−1)]−1
∑
i

∑
j

δjI[yi > yj]Φ

(
βT (xj − xi) + γT (zj − zi)

g

)
,

where Φ(·) represents a local normal distribution function and g is its bandwidth

which converges to 0 as n increases (Song et al., 2007).

With the coefficient estimates (β̂, γ̂), the impact of the new factors on the weighted

c-index may be estimated by

Dn(β̂, γ̂, Ĝ; τ)−D[P ]
n (β̂, Ĝ; τ)

where Dn(β̂, γ̂, Ĝ; τ) is expressed in (2), and from (10),

D[P ]
n (β̂, Ĝ; τ) =

∑
i,j

I[β̂
T
xi > β̂

T
xj]δiI[yi < yj, yi < τ ]{Ĝ(yi)}−2

∑
i,j

δiI[yi < yj, yi < τ ]{Ĝ(yi)}−2
,

is a consistent estimate of the projected concordance probability κ[P ](τ). In contrast

to Section 3.2, the weighted c-index is employed because the model precedence probability

cannot be computed without specifying the error distribution. The use of the weighted

c-index simplifies the calculation of the impact estimate, but at the cost of including

inverse probability censoring weights. The asymptotic distribution for the estimated

impact, using the weighted c-index, is provided in Theorem 3.

Theorem 3:

n1/2[Dn(β̂, γ̂, Ĝ; τ)−D[P ]
n (β̂, Ĝ; τ)− ξ(τ)]

D→ N(0, VD). (13)
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This result follows directly by noting that

Dn(β̂, γ̂, Ĝ; τ)−D
[P ]
n (β̂, Ĝ; τ) =∑

i,j

[
I(β̂

T
xi + γ̂Tzi > β̂

T
xj + γ̂Tzj)− I(β̂

T
xi > β̂

T
xj)
]
δiI(yi < yj, yi < τ){Ĝ(yi)}−2

∑
i,j

δiI(yi < yj, yi < τ){Ĝ(yi)}−2

and applying the asymptotic normality derivation in Uno et al. (2011) to the statistic

above.

4 Simulation Studies

Simulations were performed to estimate the adequacy of the projection estimate of

the concordance probability and the resultant impact estimate. The three approaches

detailed in this work were considered.

1. The enhanced model coefficients were estimated with the partial likelihood, and

the concordance probabilities were computed with the CPE. [PL/CPE]

2. The enhanced model coefficients were estimated with the partial likelihood,

and the concordance probabilities were estimated with the weighted c-index.

[PL/wCI]

3. The enhanced model coefficients were estimated using the partial rank method,

and the concordance probabilities were computed with the weighted c-index.

[PR/wCI]

The abbreviations in square brackets will be used freely throughout this section to

denote the three approaches.
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The first set of simulations evaluated the estimates under proportional hazards,

while the second evaluated the estimates under non-proportional hazards. Across

all simulations, two conventional factors, X1 and X2, and two new factors under

evaluation, Z1 and Z2, were generated as independent normal random variables with

mean 0 and variance 1. All four factors generated the underlying survival times for

the enhanced model, and the censoring times were generated independently of all

factors. Impact parameters of 0.025, 0.05, and 0.10 for the concordance probability

were evaluated. Across all scenarios, the concordance probability of the enhanced

model was 0.70.

For the proportional hazards simulations, survival times were generated using

the regression model ti = exp{−(β1xi1 + β2xi2 + γ1zi1 + γ2zi2)} × ϵi, where ϵi were

independent exponential random variables with a scale parameter equal to 1. To

achieve an impact ξ(τ) of 0.025 on the concordance probability from the enhanced

model, the following parameters were selected: β1 = 0.718, β2 = 0.15, γ1 = 0.346,

γ2 = 0.15, and using τ = 1.18. Censoring times were generated from a Uniform(0,

b), where b was selected to be 1.58 and 4.75 to achieve an average censoring rate of

50% and 25%, respectively. The parameters were also estimated when the censoring

rate was 0%, and all failure times were observed. To achieve an impact ξ(τ) of 0.05,

the following parameters were selected: β1 = 0.624, β2 = 0.15, γ1 = 0.505, γ2 = 0.15.

Lastly, for an impact of 0.10, the parameters were β1 = 0.408, β2 = 0.15, γ1 = 0.684,

and γ2 = 0.15. The value of τ and the two censoring distributions remained the same.

Under non-proportional hazards, survival times were generated from a conditional

proportional hazards model with a gamma frailty, ti = exp{−(β1xi1 + β2xi2 + γ1zi1 +

γ2zi2 + logwi)} × ϵi, where wi are independent gamma random variables with shape
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and scale parameters equal to 0.25, and the ϵi were independent exponential random

variables with a scale parameter of 1. To achieve an impact of 0.025 in the concordance

probability, the following parameters were selected: β1 = 1.741, β2 = 0.15, γ1 =

0.887, and γ2 = 0.15, along with τ = 6. Censoring times were again generated from

Uniform(0, b), where the values of 13 and 310 for b achieved an average censoring

rate of 50% and 25%, respectively, in addition to the scenario when the rate was

0%. For an impact of 0.05, the parameters were β1 = 1.567, β2 = 0.15, γ1 = 1.301,

and γ2 = 0.15. For an impact of 0.10, the parameters were β1 = 1.061, β2 = 0.15,

γ1 = 1.754, and γ2 = 0.15. The values of τ and b remained the same.

For each iteration of the data-generating process, the impact of the new risk factors

ξ(τ) on the concordance probability from the enhanced model, was estimated using

the CPE projection framework via the estimates Kn(β̂, γ̂, θ̂, π̂; τ) and K
[P ]
n (β̂, θ̂[P ], π̂; τ)

and with the weighted c-index using Dn(β̂, γ̂, Ĝ; τ) and D
[P ]
n (β̂, Ĝ; τ) using the proportional

hazards (PH) model estimates or the partial rank estimates (PR). Across 2,000

iterations, these approaches were compared based on the average bias and the relative

efficiency using the root mean square error (rMSE) of the CPE with respect to the

weighted c-index using either PH or PR. In addition, for each iteration of the data-

generating process, the respective standard errors for each concordance measure were

estimated using 50 bootstrap samples. Using these standard error estimates, the

ratio of the estimated standard error to the simulation standard error was calculated

along the 95% coverage probability. The sample size for all simulations was 300.

The impact and projected concordance probability parameters were determined by

simulation from the average of 2,000 iterations, with each iteration containing 2,000

uncensored observations.
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Results for the proportional hazards simulations are presented in Tables 3, 4, and

5 when the impact parameter in the concordance probability was 0.025, 0.05, and

0.10, respectively, based on the two new risk factors. For the three approaches, the

average biases for the projection and impact estimates were minimal across scenarios.

Using the bootstrap-based standard error estimates, all methods provided coverage

near the 95% nominal level for both parameters, and the ratios of the estimated

standard error to the simulation standard error were aligned close to 1. Under correct

specification of the underlying model, the PL/CPE had relative efficacy gains of 10-

31% over the PL/wCI and the PR/wCI, where the gains depended on the censoring

rate and whether the projection concordance probability or impact parameter was

being estimated.

Tables 6, 7, and 8 provide the simulation results under the non-proportional

hazards scenario when the impact on concordance was 0.025, 0.05, and 0.10, respectively.

Due to the underlying model misspecification, the PL/CPE approach produced biased

estimates for both the projection concordance and impact parameters, along with poor

coverage. Importantly, the test for the proportional hazards assumption (Grambsch

and Therneau, 1994) was rejected 100% when there was no censoring and at least

93% of the time across all scenarios (Supplemental Table, S1). This reiterates the

need to interrogate any modeling assumptions before selecting the methodological

approach to estimate the projection and impact parameters. While the average bias

was small for the PL/wCI estimates, the simulation standard errors were misaligned

with the estimated bootstrap standard errors in some scenarios. These situations led

to inefficiencies and weakened coverage relative to the PR/wCI estimates.

These findings imply that in cases where the data closely align with the proportional
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hazards assumption, the partial likelihood/CPE projection approach outperforms in

estimating the influence of new risk factors on the concordance probability. This

superiority is attributed to the generation of smaller standard error estimates and,

consequently, the formation of more tightly bound 95% confidence intervals. However,

when the data are not well approximated by proportional hazards, or more generally,

the models in Section 2, the partial rank estimate/weighted c-index is the preferred

approach.

5 Prostate Cancer Example - Conclusion

Six hundred and thirty one men with complete risk factor data were treated with an

androgen receptor targeted therapy as part of a randomized clinical trial in metastatic

prostate cancer. The objective was to use the survival and risk factor data to

evaluate the impact of the two new biomarkers on the concordance probability. The

rationale for the inclusion of the new biomarkers, circulating tumor cells and serum

testosterone, are distinct. Circulating tumor cells provide a blood-based quantification

of tumor burden with high levels a direct measure of advanced disease. In contrast,

low values of serum testosterone in the presence of metastatic disease is an indirect

indication that the prostate cancer is aggressive.

The maximum event time in this cohort was 32.7 months, which led to the

choice τ = 30 months for the follow-up time used in the concordance probability

analysis. The CPE for the enhanced model was 0.704 and the 95% confidence interval

for the concordance probability parameter (1) was (0.679 − 0.729). Applying the
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projection method in Section 3.2, the CPE estimated impact parameter, computed

from Kn(β̂, γ̂, θ̂, π̂; τ) and K
[P ]
n (β̂, θ̂[P ], π̂; τ), was 0.088, and the 95% confidence interval

for the impact parameter (11) was (0.060 − 0.115). The weighted c-index for the

enhanced model using the partial rank estimate was 0.735, with its attendant 95%

confidence interval (0.695 − 0.775). The weighted c-index produced a comparable

impact estimate, computed from Dn(β̂, γ̂, Ĝ; τ) and D
[P ]
n (β̂, Ĝ; τ), equal to 0.095,

and the 95% confidence interval for the impact parameter was (< 0.01 − 0.190). As

anticipated, the confidence interval using the partial rank estimate was wider than

the CPE-based interval, which results from the improved efficiency of the CPE when

the data are well approximated by proportional hazards.

Historically, PSA has been one of the foremost prognostic serum biomarkers

employed in prostate cancer research. When subtracting the standard CPEs from two

nested incorrectly specified proportional hazards models, namely (i) ECOG status and

visceral disease presence, and (ii) PSA, ECOG status, and visceral disease presence,

the impact of removing PSA from the conventional risk model resulted in a CPE

reduction of −0.019 (95% CI: -0.046, 0.009). This suggests either no impact or a

marginal decrease in PSA’s prognostic impact on the CPE among the conventional

risk factors, and contradicts the conventional wisdom in the field. The proportionality

of the enhanced model including CTC and serum testosterone, however, may be

leveraged to employ the projection method to gauge the impact of PSA on the CPE

among conventional factors. For this purpose, the impact of CTC and testosterone on

the enhanced model was subtracted from the impact of PSA, CTC, and testosterone

on the enhanced model. The difference was 0.031 (95% CI: 0.008, 0.054), supporting

the positive influence of PSA on the CPE within the conventional risk factors.
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These results provide unequivocal support for incorporating PSA, circulating

tumor cells and testosterone into the enhanced risk model. However, the estimates of

the concordance probability from the enhanced model containing all the risk factors

(0.704 and 0.735) indicate that further research is needed to generate new risk factors

in this population before the model may be applied to assist in clinical decisions.

6 Discussion

In biology and medicine, the discovery of novel biological factors is often followed by

an assessment of their association with one or a set of clinical outcomes, a key step

as a discovery goes from the bench to the bedside. If an association is established,

subsequent empirical research is needed to evaluate the impact of these novel factors

relative to known risk factors in the patient population. This step, which often

requires a model to link the risk factors to the clinical outcome, is useful in determining

where the discovery lies on the spectrum between redundant and orthogonal risk factor

information.

The value of a risk model may be partly summarized using measures such as

calibration, discrimination, likelihood-based, and explained variation. In this work,

we focused on the concordance probability, a discrimination metric that synthesizes

well when applied to scale transformation models. Naively, one approach to evaluate

the influence of the new risk factors is to compute the concordance probability in a

model containing both conventional risk factors and new risk factors and compare it

to the concordance probability using the conventional risk factors alone. The issue
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with this frequently utilized approach stems from the fact that scale transformation

models, in general, do not exhibit nesting. This lack of nesting may subsequently

affect estimation of the influence of new factors on the concordance probability.

To ascertain the impact of the new risk factors on the concordance probability,

a new approach using projection methodology was developed with the concordance

probability estimate (CPE) and the weighted c-index. This approach does not apply

a reduced model, enabling the analyst to focus on the discriminative aspects of the

newly introduced risk factors within the enhanced survival model. The choice of

concordance estimates was dependent on whether the analyst was confident that

the data fit one of the specified models in Section 2. The most commonly applied

model in this family is the proportional hazards model. One benefit of identifying

the error distribution (Section 3.2) is greater efficiency of the impact statistic through

the use of the CPE. An additional benefit is the interpretability of the parameters

(β,γ) in the scale transformation model. As noted in Dabrowska and Doksum

(1988), the interpretation of the parameters for the models considered in Section

2 are independent of the transformation m(·).

The CPE approach assumes that the analyst has a good understanding of their

data and can identify an enhanced scale transformation model to approximate this

data. In practice, this may require covariate stratification, truncation of the follow up

time, or the transformation of covariates. In the prostate data, the effect of circulating

tumor cells (CTCs) was bifurcated based on whether the baseline value was less

than or greater than ten CTCs to approximate a proportional hazards specification.

There will be times, however, when one cannot approximate a properly specified

enhanced scale transformation model. This includes the special case where it is the
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reduced model that can be properly specified. In these cases, it is recommended that

the analyst use the partial rank methodology to estimate the coefficients from the

enhanced model and apply the weighted c-index along with its projection to evaluate

the impact of the new covariates. One alternative to the partial rank estimate in

this scenario, is to find a superset of factors that are properly specified by a scale

transformation model, and evaluate the two subsets of risk factors using the projection

method. This was the method we used to determine the impact of PSA among the

conventional risk factors. A second method suggested by a reviewer, is to consider

nonparametric maximum likelihood estimation (Zeng and Lin, 2007), which requires

joint estimation of the infinite dimensional parameter m(t) and the finite dimensional

coefficient parameters (β,γ).

For the prostate cancer data in this paper, the concordance probability estimate,

measured on a scale between 0.5 and 1.0, was only 0.70 in the enhanced model,

an indication that further research is needed to find new factors that discriminate

between longer-term survivors and short-term survivors. The analysis also demonstrated

that the new biomarkers CTC and serum testosterone were highly influential in

discriminating patient risk. The benefit of CTC alone can be further magnified using

the proposed projection methodology. Ignoring the heterogeneity due to CTC in the

enhanced risk model, produced a much smaller CPE equal to 0.62. Alternatively,

ignoring all factors but CTC in the risk model, produced a concordance probability

estimate equal to 0.67, surprisingly close to the enhanced model CPE. Thus, although

the CTC assay costs more than the combined costs of the PSA and serum testosterone

assay, there is a benefit to its inclusion in the risk model. Further research evaluating

a cost-benefit analysis for CTC and overall survival would provide additional useful
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information.

The impact measure was derived from a scale transformation survival model.

The benefit of the scale transformation model is the reduction in dimensionality in

the risk assessment through a single risk index. The application of a single index

model is justified as an approximation to a more complex risk function (Hall, 1989).

Alternative approaches to understanding individual risk, which explicitly encompasses

greater risk complexity and dimensionality, include random forest, neural network,

and nonparametric regression models. Evaluation of the impact of new factors in this

high dimensional high complexity case will be the subject of future research.

Code Availability

The code to implement the projection-based impact parameter is available using the

R package ‘SurvEval,’ which is on CRAN (Devlin and Heller, 2024).
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Tables and Figures

Table 1: Proportional hazards estimates for the enhanced model with 631 metastatic

prostate cancer patients for the endpoint of overall survival. A total of 248 died

during the follow-up period.

log(RR) se[log(RR)] p-value

PSA 0.018 0.006 0.002

Visceral Disease 0.387 0.156 0.013

ECOG Status -0.408 0.134 0.002

Serum Testosterone -1.625 0.453 <0.001

CTClow 0.258 0.076 0.001

CTChigh 0.106 0.009 <0.001

PSA, testosterone, and CTC were estimated under a square root

transformation. CTClow are the transformed values <
√
10, 0 otherwise,

while CTChigh are values ≥
√
10, 0 otherwise. RR is the relative risk.
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Table 2: Proportional hazards estimates for the reduced working model.

log(RR) se[log(RR)] p-value

PSA 0.030 0.004 <0.001

Visceral Disease 0.378 0.154 0.014

ECOG Status -0.484 0.132 <0.001

PSA was estimated under a square root transformation.
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Table 3: Proportional hazards simulation results for the impact parameter equal

to 0.025. The average bias and relative efficiency of the projection-based CPE

with respect to the weighted c-index were averaged over 2,000 simulation iterations.

Standard errors were calculated based on 50 bootstrap samples within each iteration

and compared to the simulation standard error. Coverage was based on 95%

confidence intervals using the bootstrap standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.675 PL/CPE 0% 0.001 1.000 0.991 0.949

300 0.70 0.675 PL/wCI 0% <0.001 1.225 1.010 0.951

300 0.70 0.675 PR/wCI 0% <0.001 1.225 1.010 0.951

300 0.70 0.675 PL/CPE 25% 0.001 1.000 0.999 0.953

300 0.70 0.675 PL/wCI 25% 0.000 1.164 1.013 0.954

300 0.70 0.675 PR/wCI 25% 0.001 1.165 1.013 0.952

300 0.70 0.675 PL/CPE 50% 0.001 1.000 0.972 0.939

300 0.70 0.675 PL/wCI 50% 0.001 1.094 1.003 0.953

300 0.70 0.675 PR/wCI 50% 0.001 1.096 1.007 0.951

Impact

300 0.70 0.675 PL/CPE 0% 0.001 1.000 1.006 0.948

300 0.70 0.675 PL/wCI 0% 0.001 1.324 1.028 0.957

300 0.70 0.675 PR/wCI 0% 0.002 1.344 1.034 0.953

300 0.70 0.675 PL/CPE 25% 0.002 1.000 1.014 0.949

300 0.70 0.675 PL/wCI 25% 0.002 1.212 1.040 0.958

300 0.70 0.675 PR/wCI 25% 0.002 1.227 1.045 0.954

300 0.70 0.675 PL/CPE 50% 0.003 1.000 1.019 0.946

300 0.70 0.675 PL/wCI 50% 0.003 1.108 1.072 0.959

300 0.70 0.675 PR/wCI 50% 0.003 1.116 1.081 0.961
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Table 4: Proportional hazards simulation results for the impact parameter equal to

0.05. The average bias and relative efficiency of the projection-based CPE with

respect to the weighted c-index were averaged over 2,000 simulation iterations.

Standard errors were calculated based on 50 bootstrap samples within each iteration

and compared to the simulation standard error. Coverage was based on 95%

confidence intervals using the bootstrap standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.65 PL/CPE 0% 0.002 1.000 1.040 0.959

300 0.70 0.65 PL/wCI 0% 0.001 1.238 1.018 0.951

300 0.70 0.65 PR/wCI 0% 0.001 1.238 1.018 0.954

300 0.70 0.65 PL/CPE 25% 0.002 1.000 1.003 0.950

300 0.70 0.65 PL/wCI 25% 0.001 1.176 1.012 0.950

300 0.70 0.65 PR/wCI 25% 0.001 1.177 1.014 0.949

300 0.70 0.65 PL/CPE 50% 0.002 1.000 0.980 0.941

300 0.70 0.65 PL/wCI 50% 0.002 1.101 1.008 0.949

300 0.70 0.65 PR/wCI 50% 0.002 1.104 1.013 0.952

Impact

300 0.70 0.65 PL/CPE 0% 0.001 1.000 1.020 0.956

300 0.70 0.65 PL/wCI 0% 0.001 1.304 1.019 0.956

300 0.70 0.65 PR/wCI 0% 0.002 1.314 1.021 0.957

300 0.70 0.65 PL/CPE 25% 0.001 1.000 1.012 0.949

300 0.70 0.65 PL/wCI 25% 0.001 1.230 1.015 0.954

300 0.70 0.65 PR/wCI 25% 0.002 1.240 1.016 0.955

300 0.70 0.65 PL/CPE 50% 0.002 1.000 1.012 0.957

300 0.70 0.65 PL/wCI 50% 0.002 1.121 1.041 0.959

300 0.70 0.65 PR/wCI 50% 0.002 1.126 1.047 0.959
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Table 5: Proportional hazards simulation results for the impact parameter equal to

0.10. The average bias and relative efficiency with respect to the projection-based

CPE were averaged over 2,000 simulation iterations. Standard errors were calculated

based on 50 bootstrap samples within each iteration and compared to the simulation

standard error. Coverage was based on 95% confidence intervals using the bootstrap

standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.60 PL/CPE 0% 0.001 1.000 1.006 0.954

300 0.70 0.60 PL/wCI 0% 0.001 1.241 1.034 0.957

300 0.70 0.60 PR/wCI 0% 0.001 1.240 1.038 0.959

300 0.70 0.60 PL/CPE 25% 0.001 1.000 1.009 0.959

300 0.70 0.60 PL/wCI 25% 0.001 1.167 1.033 0.958

300 0.70 0.60 PR/wCI 25% 0.002 1.169 1.035 0.957

300 0.70 0.60 PL/CPE 50% 0.002 1.000 0.996 0.948

300 0.70 0.60 PL/wCI 50% 0.002 1.104 1.024 0.958

300 0.70 0.60 PR/wCI 50% 0.002 1.108 1.032 0.960

Impact

300 0.70 0.60 PL/CPE 0% 0.001 1.000 0.987 0.945

300 0.70 0.60 PL/wCI 0% 0.001 1.248 1.028 0.952

300 0.70 0.60 PR/wCI 0% 0.002 1.251 1.026 0.952

300 0.70 0.60 PL/CPE 25% 0.001 1.000 1.000 0.953

300 0.70 0.60 PL/wCI 25% 0.001 1.196 1.016 0.951

300 0.70 0.60 PR/wCI 25% 0.002 1.201 1.014 0.950

300 0.70 0.60 PL/CPE 50% 0.002 1.000 1.010 0.953

300 0.70 0.60 PL/wCI 50% 0.001 1.109 1.044 0.955

300 0.70 0.60 PR/wCI 50% 0.002 1.110 1.051 0.958
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Table 6: Non-proportional hazards simulation results for the impact parameter equal

to 0.025. The average bias and relative efficiency with respect to the projection-based

CPE were averaged over 2,000 simulation iterations. Standard errors were calculated

based on 50 bootstrap samples within each iteration and compared to the simulation

standard error. Coverage was based on 95% confidence intervals using the bootstrap

standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.675 PL/CPE 0% -0.107 1.000 0.737 0.006

300 0.70 0.675 PL/wCI 0% -0.008 0.333 0.802 0.958

300 0.70 0.675 PR/wCI 0% 0.001 0.192 1.001 0.952

300 0.70 0.675 PL/CPE 25% -0.053 1.000 0.959 0.270

300 0.70 0.675 PL/wCI 25% 0.001 0.377 1.009 0.942

300 0.70 0.675 PR/wCI 25% 0.002 0.376 0.999 0.940

300 0.70 0.675 PL/CPE 50% -0.016 1.000 0.965 0.875

300 0.70 0.675 PL/wCI 50% 0.002 0.794 1.004 0.946

300 0.70 0.675 PR/wCI 50% 0.002 0.795 1.003 0.945

Impact

300 0.70 0.675 PL/CPE 0% -0.013 1.000 1.010 0.607

300 0.70 0.675 PL/wCI 0% -0.006 1.444 0.869 0.936

300 0.70 0.675 PR/wCI 0% 0.002 0.741 1.077 0.959

300 0.70 0.675 PL/CPE 25% -0.007 1.000 1.012 0.805

300 0.70 0.675 PL/wCI 25% <0.001 0.984 1.091 0.945

300 0.70 0.675 PR/wCI 25% 0.002 0.981 1.066 0.949

300 0.70 0.675 PL/CPE 50% -0.001 1.000 1.022 0.909

300 0.70 0.675 PL/wCI 50% 0.001 1.033 1.065 0.946

300 0.70 0.675 PR/wCI 50% 0.003 1.051 1.059 0.948
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Table 7: Non-proportional hazards simulation results for the impact parameter equal

to 0.05. The average bias and relative efficiency with respect to the projection-based

CPE were averaged over 2,000 simulation iterations. Standard errors were calculated

based on 50 bootstrap samples within each iteration and compared to the simulation

standard error. Coverage was based on 95% confidence intervals using the bootstrap

standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.65 PL/CPE 0% -0.092 1.000 0.763 0.021

300 0.70 0.65 PL/wCI 0% -0.008 0.396 0.799 0.952

300 0.70 0.65 PR/wCI 0% 0.001 0.227 1.007 0.952

300 0.70 0.65 PL/CPE 25% -0.044 1.000 0.975 0.387

300 0.70 0.65 PL/wCI 25% 0.001 0.450 1.020 0.954

300 0.70 0.65 PR/wCI 25% 0.001 0.449 1.006 0.951

300 0.70 0.65 PL/CPE 50% -0.012 1.000 0.987 0.913

300 0.70 0.65 PL/wCI 50% 0.001 0.875 1.015 0.953

300 0.70 0.65 PR/wCI 50% 0.002 0.877 1.013 0.954

Impact

300 0.70 0.65 PL/CPE 0% -0.031 1.000 0.934 0.254

300 0.70 0.65 PL/wCI 0% -0.006 0.809 0.868 0.938

300 0.70 0.65 PR/wCI 0% 0.002 0.470 1.058 0.959

300 0.70 0.65 PL/CPE 25% -0.016 1.000 1.002 0.772

300 0.70 0.65 PL/wCI 25% <0.001 0.746 1.079 0.963

300 0.70 0.65 PR/wCI 25% 0.002 0.746 1.059 0.959

300 0.70 0.65 PL/CPE 50% -0.005 1.000 1.029 0.952

300 0.70 0.65 PL/wCI 50% 0.001 0.984 1.064 0.964

300 0.70 0.65 PR/wCI 50% 0.003 0.992 1.060 0.962
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Table 8: Non-proportional hazards simulation results for the impact parameter equal

to 0.10. The average bias and relative efficiency with respect to the projection-based

CPE were averaged over 2,000 simulation iterations. Standard errors were calculated

based on 50 bootstrap samples within each iteration and compared to the simulation

standard error. Coverage was based on 95% confidence intervals using the bootstrap

standard error estimate.
Relative Efficiency Estimated to

N Enhanced Projection Estimate Censoring Bias CPE w.r.t. wCI Simulation SE Coverage

Projection

300 0.70 0.65 PL/CPE 0% -0.058 1.000 0.861 0.146

300 0.70 0.65 PL/wCI 0% -0.010 0.627 0.842 0.932

300 0.70 0.65 PR/wCI 0% 0.002 0.365 1.018 0.954

300 0.70 0.60 PL/CPE 25% -0.027 1.000 0.986 0.719

300 0.70 0.60 PL/wCI 25% 0.001 0.683 1.050 0.959

300 0.70 0.60 PR/wCI 25% 0.002 0.678 1.019 0.954

300 0.70 0.60 PL/CPE 50% -0.006 1.000 1.012 0.949

300 0.70 0.60 PL/wCI 50% 0.002 0.986 1.039 0.962

300 0.70 0.60 PR/wCI 50% 0.002 0.992 1.030 0.958

Impact

300 0.70 0.60 PL/CPE 0% -0.066 1.000 0.855 0.071

300 0.70 0.60 PL/wCI 0% -0.004 0.509 0.889 0.936

300 0.70 0.60 PR/wCI 0% 0.002 0.320 1.047 0.959

300 0.70 0.60 PL/CPE 25% -0.034 1.000 0.977 0.569

300 0.70 0.60 PL/wCI 25% <0.001 0.568 1.073 0.965

300 0.70 0.60 PR/wCI 25% 0.002 0.562 1.045 0.959

300 0.70 0.60 PL/CPE 50% -0.012 1.000 1.016 0.928

300 0.70 0.60 PL/wCI 50% 0.001 0.901 1.057 0.962

300 0.70 0.60 PR/wCI 50% 0.003 0.901 1.052 0.957
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Supplementary Material

Measuring the Impact of New Risk Factors Within Survival

Models

1



S1 Assessment of the proportional hazards assumption

in data example of 631 metastatic prostate cancer

patients.
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Figure S1: The smoothed relationship between the scaled Schoenfeld residuals and

time are plotted for each risk factor in the enhanced model. The p-value provided at

the top of each plot is generated from a null test statistic of a constant slope.
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Figure S2: The Schoenfeld residuals are plotted over time for each risk factor in the

reduced model. The p-value provided at the top of each plot is generated from a null

test statistic of a constant slope.
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S2 Derivation of Theorems 1 and 2

The following notation and regularity conditions are used throughout the appendix.

(C1) The difference in risk indices are denoted by

βTxij = βTxi − βTxj, γTzij = γTzi − γTzj

and the marginal precedence probability is represented as

π(τ) = Pr(T1 < T2, T1 < τ).

(C2) (Ti,X i,Zi), i = 1, . . . , n are an independent random sample from (T,X,Z).

(C3) The random vector (X,Z) and the parameter vector (β0,γ0) each lie in a

p+q dimensional bounded rectangle, where (β0,γ0) are the true values of (β,γ).

(C4) The enhanced model precedence probability θabcd(β,γ; τ) =

Pr(T1 < T2, T1 < τ |βTX1 = βTxa,β
TX2 = βTxb,γ

TZ1 = γTzc,γ
TZ2 = γTzd)

has bounded first partial derivatives in a compact neighborhood of (β0,γ0).

(C5) As n → ∞, the centered estimates

n1/2
[
(β̂ − β0), (γ̂ − γ0), (θ̂abcd(β0,γ0; τ)− θabcd(β0,γ0; τ)), (π̂(τ)− π0(τ))

]
converge to a multivariate normal random vector with mean zero.

(C6) ϕ(u/h) and Φ(u/g) are a normal kernel density function with bandwidth h and

a normal local distribution function with bandwidth g, respectively.

As n → ∞, the bandwidths satisfy, h, g → 0, nh2 → ∞, nh4 → 0,

and ng4 → 0.
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Theorem 1

Let θ̂
[P ]
12 (β̂; τ) =

n−2
∑
k,l

θ̂12kl(β̂, γ̂; τ)ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl)

n−2
∑
k,l

ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl)

Then θ̂
[P ]
12 (β̂; τ) = Pr(T1 < T2, T1 < τ |βT

0 x1,β
T
0 x2) + op(1).

Proof:

The coefficient estimate β̂ within the kernel ϕ(·) may be treated as a constant since

its
√
n convergence rate is faster than the nonparametric kernel estimate rate.

The denominator of the Nadarya-Watson kernel estimate θ̂
[P ]
12 , may be represented

asymptotically as

n−2
∑
k,l

ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl) = fβT

0 X1
(βT

0 x1)fβT
0 X2

(βT
0 x2) + op(1).

For the numerator, a first order Taylor series expansion of the model precedence

probability around
[
β̂ = β0, γ̂ = γ0, θ̂abcd(β0,γ0; τ) = θabcd(β0,γ0; τ)

]
results in

n−2
∑
k,l

θ̂12kl(β̂, γ̂; τ)ϕh(β̂
T
x1, β̂

T
xk)ϕh(β̂

T
x2, β̂

T
xl)

= Pr(T1 < T2, T1 < τ |βT
0 x1,β

T
0 x2)fβT

0 X1
(βTx1)fβT

0 X2
(βTx2) + op(1).

Therefore, θ̂
[P ]
12 (β̂; τ) = Pr(T1 < T2, T1 < τ |βT

0 x1,β
T
0 x2) + op(1) .

6



Theorem 2:

The following notation, used throughout the proof of Theorem 2, is collected here.

Consider the concordance probability estimate (CPE) from the extended model and

the CPE for X alone obtained by projection

Kn(β̂, γ̂, θ̂(β̂, γ̂; τ), π̂(τ)) = [n2π̂(τ)]−1
∑
i,j

I(β̂
T
xij + γ̂Tzij > 0) θ̂ijij(β̂, γ̂; τ)

K [P ]
n (β̂, θ̂[P ](β̂; τ), π̂(τ)) = [n2π̂(τ)]−1

∑
i,j

I(β̂
T
xij > 0)θ̂

[P ]
ij (β̂; τ),

where to make the arguments in the CPE statistics more concise, going forward we

write

θ̂ ≡ θ̂(β̂, γ̂; τ) θ̂0 ≡ θ̂(β0,γ0; τ) θ0 ≡ θ(β0,γ0; τ) π̂(τ) ≡ π̂ π0(τ) ≡ π0.

The impact parameter is denoted by

ξ(τ) = κ(τ)− κ[P ](τ),

where as described by equations (5) and (9) in the text,

Kn(β̂, γ̂, θ̂, π̂; τ)
p→ κ(τ)

K [P ]
n (β̂, θ̂[P ], π̂; τ)

p→ κ[P ](τ).

Then Theorem 2 is stated as

n1/2
[
Kn(β̂, γ̂, θ̂, π̂; τ)−K [P ]

n (β̂, θ̂[P ], π̂; τ)− ξ (τ)
]

D→ N(0, V ) (S.1)
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Proof

To derive this result, smooth versions of Kn and K
[P ]
n are employed

K̃n(β̂, γ̂, θ̂, π̂; τ) = [n2π̂(τ)]−1
∑
i,j

Φ

(
β̂

T
xij + γ̂Tzij

g

)
θ̂ijij(β̂, γ̂; τ)

K̃ [P ]
n (β̂, θ̂[P ], π̂; τ) = [n2π̂(τ)]−1

∑
i,j

Φ

(
β̂

T
xij

g

)
θ̂
[P ]
ij (β̂; τ)

The asymptotic normal distribution (S.1) is demonstrated via the decomposition

n1/2
{[

Kn(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π̂; τ)
]
−
[
K

[P ]
n (β̂, θ̂[P ], π̂; τ)− K̃

[P ]
n (β̂, θ̂[P ], π̂; τ)

]}
+

n1/2
{[

K̃n(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π0; τ)
]
−
[
K̃

[P ]
n (β̂, θ̂[P ], π̂; τ)− K̃

[P ]
n (β̂, θ̂[P ], π0; τ)

]}
+

n1/2
{[

K̃n(β̂, γ̂, θ̂, π0; τ)− K̃n(β0,γ0, θ̂0, π0; τ)
]
−
[
K̃

[P ]
n (β̂, θ̂[P ], π0; τ)− K̃

[P ]
n (β0, θ̂

[P ]
0 , π0; τ)

]}
+

n1/2
{[

K̃n(β0,γ0, θ̂0, π0; τ)− K̃n(β0,γ0, θ0, π0; τ)
]
−
[
K̃

[P ]
n (β0, θ̂

[P ]
0 , π0; τ)− K̃

[P ]
n (β0, θ

[P ]
0 , π0; τ)

]}
+

n1/2
{[

K̃n(β0,γ0, θ0, π0; τ)− κ(τ)
]
−
[
K̃

[P ]
n (β0, θ0, π0; τ)− κ[P ](τ)

]}
.

The asymptotic results are developed below.

• From the first line of the decomposition,

n1/2
{[

Kn(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π̂; τ)
]}

=

n−3/2[π̂(τ)]−1
∑
i,j

{
I(β̂

T
xij + γ̂Tzij > 0)− Φ

(
β̂
T
xij + γ̂Tzij

g

)}
θ̂ijij(β̂, γ̂; τ).

Since 0 < π̂(τ) < 1 and
∣∣∣θ̂ijij(β̂, γ̂; τ)∣∣∣ < 1,

< Mn−3/2 sup
β,γ

∣∣∣∣∣∑
i,j

{
I(βTxij + γTzij > 0)− Φ

(
βTxij + γTzij

g

)}∣∣∣∣∣
The right hand side of this inequality may be rewritten as

Mn1/2 sup
β,γ

∣∣∣∣∫
u

{
I(u > 0)− Φ

(
u

g

)}
dF̂n×n(u)

∣∣∣∣
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where F̂n×n(u) is the empirical cumulative distribution function with jumps at each

of the n2 elements of uij. This expression has the same form as the expression in

Heller (2007, Lemma A.1), where it is shown

n1/2
{[

Kn(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π̂; τ)
]}

p→ 0

uniformly in (β,γ).

The same argument demonstrates that

n1/2
{[

K [P ]
n (β̂, θ̂[P ], π̂; τ)− K̃ [P ]

n (β̂, θ̂[P ], π̂; τ)
]}

p→ 0

uniformly in (β,γ).

• For the second line of the decomposition

n1/2
{[

K̃n(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π0; τ)
]}

=

{
n1/2 [π0(τ)− π̂(τ)]

π0(τ)π̂(τ)

}{
n−2

∑
i,j

Φ

(
β̂

T
xij + γ̂Tzij

g

)
θ̂ijij(β̂, γ̂; τ)

}

The first term in curly brackets, from Kaplan-Meier estimation theory, converges

in distribution to a mean zero normal random variable. The second term in curly

brackets converges in probability to a constant. It follows from Slutsky’s Theorem

that

n1/2
{[

K̃n(β̂, γ̂, θ̂, π̂; τ)− K̃n(β̂, γ̂, θ̂, π0; τ)
]}

D→ N(0, V2).

A similar argument gives

n1/2
{[

K [P ]
n (β̂, θ̂[P ], π̂; τ)− K̃ [P ]

n (β̂, θ̂[P ], π0; τ)
]}

D→ N(0, V2P ).

• In the third and fourth lines of the decomposition, using the asymptotic normality

9



in (C5), a first order Taylor series around
[
β̂, γ̂, θ̂(β̂, γ̂)

]
= [β0,γ0, θ0], results in

n1/2
{
K̃n(β̂, γ̂, θ̂, π0; τ)− K̃n(β0,γ0, θ̂0, π0; τ)

}
D→ N(0, V3)

n1/2
{
K̃ [P ]

n (β̂, θ̂[P ], π0; τ)− K̃ [P ]
n (β0, θ̂

[P ]
0 , π0; τ)

}
D→ N(0, V3P )

n1/2
{
K̃n(β0,γ0, θ̂0, π0; τ)− K̃n(β0,γ0, θ0, π0; τ)

}
D→ N(0, V4)

n1/2
{
K̃ [P ]

n (β0, θ̂
[P ]
0 , π0; τ)− K̃ [P ]

n (β0,γ0, θ
[P ]
0 , π0; τ)

}
D→ N(0, V4P )

• From the fifth line of the decomposition,

n1/2
[
K̃n(β0,γ0, θ0, π0; τ)− κ(τ)

]
= n−3/2

∑
i,j

{
[π0(τ)]

−1

[
Φ

(
βTxij

g

)
θijij(β0,γ0; τ)

]
− κ(τ)

}
is a degree 2 U-statistic, and therefore

n1/2
[
K̃n(β0,γ0, θ0, π0; τ)− κ(τ)

]
D→ N(0, V5).

For the projected difference

n1/2
[
K̃

[P ]
n (β0, θ

[P ]
0 , π0; τ)− κ[P ](τ)

]
=

n−3/2
∑
i,j

Φ(βT
0 xij

g

)
∑
k,l

θijkl(β0,γ0; τ)ϕh(β
T
0 xi,β

T
0 xk)ϕh(β

T
0 xj ,β

T
0 xl)

π0(τ)
∑
k,l

ϕh(β
T
0 xi,β

T
0 xk)ϕh(β

T
0 xj ,β

T
0 xl)

− κ[P ](τ)

 .

Let a1ij(β0; τ) = n−2
∑
k,l

θijkl(β0,γ0; τ)ϕh(β
T
0 xi,β

T
0 xk)ϕh(β

T
0 xj,β

T
0 xl)

a0ij(β0; τ) = n−2
∑
k,l

ϕh(β
T
0 xi,β

T
0 xk)ϕh(β

T
0 xj,β

T
0 xl)

αmij(β0; τ) = limn→∞ amij(β0; τ) m = 0, 1
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Then

n1/2
[
K̃ [P ]

n (β0, θ
[P ]
0 , π0; τ)− κ[P ](τ)

]
= n−3/2

∑
i,j

Φ
(
βT

0xij

g

)
a1ij(β0; τ)

π0(τ)a0ij(β0; τ)
− κ[P ](τ)



Taylor expanding the ratio a1ij(β0; τ)/a0ij(β0; τ) around α1ij(β0; τ)/α0ij(β0; τ),

n1/2
[
K̃

[P ]
n (β0, θ

[P ]
0 , π; τ)− κ[P ](τ)

]
= n−7/2 ×

∑
i,j,k,l

(
Φ

(
βT
0 xij

g

){
α1ij(β0; τ)

π0(τ)α0ij(β0; τ)
+

ϕh(β
T
0 xi,β

T
0 xk)ϕh(β

T
0 xj ,β

T
0 xl)

π0(τ)α0ij(β0; τ)

[
θijkl(β0,γ0; τ)−

α1ij(β0; τ)

α0ij(β0; τ)

]}
− κ[P ](τ)

)

which is a degree 4 U-statistic and therefore

n1/2[K̃ [P ]
n (β0, θ

[P ]
0 , π; τ)− κ[P ](τ)]

D→ N(0, V5P ).

Therefore, combining the terms of the decomposition,

n1/2
[
Kn(β̂, γ̂, θ̂, π̂; τ)−K [P ]

n (β̂, θ̂[P ], π̂; τ)− ξ (τ)
]

D→ N(0, V ).
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S3 Assessment of the proportional hazards assumption

in the simulation scenarios

12



Table S1: The proportion of times the proportional hazards test proposed by

Grambsch and Therneau (1994) for the enhanced model was rejected at the 0.05

level across all simulation scenarios. The proportion is calculated over the 2,000

simulation iterations in each scenario.
PH Test

Simulation Setting Enhanced Projection Censoring Proportion P < 0.05

Proportional Hazards 0.70 0.675 0% 0.050

Proportional Hazards 0.70 0.675 25% 0.056

Proportional Hazards 0.70 0.675 50% 0.056

Proportional Hazards 0.70 0.65 0% 0.065

Proportional Hazards 0.70 0.65 25% 0.055

Proportional Hazards 0.70 0.65 50% 0.053

Proportional Hazards 0.70 0.60 0% 0.067

Proportional Hazards 0.70 0.60 25% 0.053

Proportional Hazards 0.70 0.60 50% 0.057

Non-proportional Hazards 0.70 0.675 0% 1.00

Non-proportional Hazards 0.70 0.675 25% 0.998

Non-proportional Hazards 0.70 0.675 50% 0.922

Non-proportional Hazards 0.70 0.65 0% 1.00

Non-proportional Hazards 0.70 0.65 25% 0.998

Non-proportional Hazards 0.70 0.65 50% 0.933

Non-proportional Hazards 0.70 0.60 0% 1.00

Non-proportional Hazards 0.70 0.60 25% 0.999

Non-proportional Hazards 0.70 0.60 50% 0.927
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