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Worked examples of decision curve analysis using R 

A note about R versions 

The R script files to implement decision curve analysis were developed using R version 2.3.1, 
and were tested last using R version 2.9.2 on April 27, 2010.  

A note about this tutorial 

This tutorial was developed using R version 2.3.1 with the Design and Hmisc libraries added. 
The code in the tutorial uses the following functions from these libraries: lrm, cph, and survest. 
We strongly recommend using these functions because they simplify the code required to 
obtain predicted probabilities from the models. If you do not use the Design and Hmisc 
libraries, then you will need to modify the relevant lines of code in the tutorial, using the 
corresponding functions available outside of these libraries (for example, glm in place of lrm) 
and appropriate rewriting of the programming logic.  

Basic set up  
This example assumes that the user has sourced the R files “dca.R” and “stdca.R”; loaded the 
Design, Hmisc and cmprsk libraries; and the example text files are saved locally. 

 dataset1 <- read.delim("c:\dca_example_dataset1.txt", header = TRUE, sep = "\t") 
 attach(dataset1) 
 
This is a data set giving the results of research study on early detection of cancer. The data 
include the results of a clinical examination for cancer, the levels of a molecular marker and 
then the results of biopsy, the “gold standard” for whether or not the patient had cancer. 
 
The results of the clinical exam first have to be turned into a numeric variable. 
 
 pos_test <- clinical_exam=="suspicious for cancer" 
 
We then wish to examine the value of a statistical model that incorporates both the clinical 
examination and the marker. We create a new variable, giving probabilities of cancer for each 
patient on the basis of the model.  
 
 model <- predict(lrm(cancer ~ marker + pos_test), type="fitted") 
 
Calculating a decision curve 
We now want to compare our different approaches to cancer detection: biopsying everyone, 
biopsying no-one (i.e. no screening), biopsying on the basis of the clinical exam, biopsying on 
the basis of the molecular marker, or biopsying on the basis of a multivariable statistical model 



2 
 

including both the marker and clinical examination data. We have to specify that the data for 
the marker variable – unlike those for the model and the test – are not probabilities.   
 
 dca(yvar=cancer, xmatrix=cbind(model, pos_test, marker), prob=c("Y", "Y", "N")) 
 

 
In the figure legend, the models are numbered according to how they were entered in xmatrix. 
Note that without specifying ymin or ymax, the default is to plot the y-axis from -0.05 to 1.0.  
Since the maximum net benefit observed was near 0.15, we can get a clearer picture of the 
decision curve by specifying ymax=0.15. 
 
 dca(yvar=cancer, xmatrix=cbind(model, pos_test, marker), prob=c("Y", "Y", "N"), 
   ymax=0.15) 
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This shows a lot of threshold probabilities that are uninteresting, for example, it is unlikely that 
someone would require an 80% probability of cancer before they would agree to biopsy. Let’s 
imagine that, after discussing the matter with clinicians, we thought a reasonable range of 
threshold probabilities was 5% to 35%. In other words, some patients might opt for biopsy even 
if they had only a 5% chance of cancer, but it would be a rare clinician who would do more than 
20 biopsies to find a cancer; on the other hand, few patients would refuse biopsy if their risk 
was greater than 1 in 3.  
 
Here is a neater way of showing the graph. It focuses on the key range of threshold 
probabilities (5% - 35%).  
 
 dca(yvar=cancer, xmatrix=cbind(model, pos_test, marker),  
   prob=c("Y", "Y", "N"), xstart=0.05, xstop=0.35, ymax=0.10) 
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The key aspect of the graph is to look at which strategy leads to the highest net benefit. The 
black dashed line corresponds to the model that includes both the marker levels and the results 
of the clinical exam. It is has the greatest net benefit (i.e. it is the “highest” line) at all threshold 
probabilities. This is apart from two possible exceptions: between 10 and 15% it is roughly 
equivalent to using the clinical exam alone; above 30%, it is not much better than using the 
marker alone. Nonetheless, it is clear that, across the range of reasonable threshold 
probabilities, one cannot go far wrong basing clinical decisions on the model: it is generally 
superior, and unlike any alternative strategy, it is never more than trivially worse. 
 
A few general points of interest. First, look at the grey line, the net benefit for “treat all”, that 
is, biopsy everyone. This crosses the y axis at the prevalence. Imagine that a man had a risk 
threshold of 12%, and asked his risk under the "biopsy all" strategy. He would be told that his 
risk was the prevalence (12%). When a patient’s risk threshold is the same as his predicted risk, 
the net benefit of biopsying and not biopsying are the same. Second, the decision curve for the 
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binary test (the clinical exam, red dashed line) crosses that for “biopsy all men” at 1 – negative 
predictive value and again, this is easily explained: the negative predictive value is 94%, so a 
patient with a negative test has a probability of disease of 6%; a patient with a threshold 
probability less than this – for example, a patient who would opt for biopsy even if risk was 3% - 
should therefore be biopsied even if the clinical exam is negative. The decision curve for the 
binary test is equivalent to biopsy no-one at the positive predictive value. This is because for a 
binary test, a patient with a positive test is given a risk at the positive predictive value. 
 
Saving out net benefit 
If we wanted to show the net benefits in a table, we could save them out. The following code 
can be used to produce a table giving the net benefits of each strategy, and the advantage of 
the model, at risk thresholds of 5%, 10%, 15% … 35%.  
 
 output <- dca(yvar=cancer, xmatrix=cbind(model, pos_test, marker),  
   prob=c("Y", "Y", "N"), xstart=0.05, xstop=0.35, xby=0.05) 
 delta <- output$modelp1 – output$all 
 label(delta) <- “Increase in net benefit from using statistical model” 
   
 
Showing net reduction in interventions 
Now let’s imagine that the traditional approach was to biopsy everyone suspicious for cancer 
on clinical examination. We want to know whether assessing the marker in these patients 
would help reduce unnecessary biopsies. A typical research study to address this question 
would only have biopsy data on patients with a suspicious clinical examination. We’ll first 
create this data set. 
 
 dataset1 <- read.delim("c:\dca_example_dataset1.txt", header = TRUE, sep = "\t") 
 attach(dataset1) 
 subset.suspicious <- clinical_exam=="suspicious for cancer" 
 
Here is the decision curve: 
 
 dca(yvar=cancer[subset.suspicious], xmatrix= marker[subset.suspicious],  
  prob="N", xstart=0.05, xstop=0.35, ymax=0.2) 
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Use of the marker has superior net benefit from a threshold probability of about 10% or more. 
This suggests that measuring the marker would improve outcome for all but the most risk 
averse patients. The appropriate clinical conclusion would depend on the expense of measuring 
the marker, and the estimated prevalence of very risk averse patients. For example, if the 
marker were inexpensive, and few patients were willing to have biopsy at very low probabilities 
of cancer, it would be reasonable to measure the marker on all patients. If, on the other hand, 
the marker was expensive, or many patients were thought to have low threshold probabilities, 
a reasonable approach would be to conduct the clinical exam, discuss the results with the 
patient, and then order the marker if the patient was unsure what to do.  
 
Net benefit has a ready clinical interpretation. In the figure above, the net benefit of 0.05 at a 
threshold probability of 20% can be interpreted as: “Comparing to conducting no biopsies, 
biopsying on the basis of the marker is the equivalent of a strategy that found 5 cancers per 
hundred patients without conducting any unnecessary biopsies.” However, the routine clinical 
practice is to biopsy everyone with a suspicious clinical examination and what we want to know 
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is the effect on the number of unnecessary biopsies. We can show this using decision curve 
analysis by converting the net benefit to the reduction in biopsies, as follows.  
 
 # run the decision curve analysis, saving the output 
 dcaoutput <- dca(yvar=cancer[subset.suspicious], xmatrix= marker[subset.suspicious],  
   prob="N", xstart=0.05, xstop=0.35, ymin=-1) 
 #compute reduction using formula 
 reduction <- (dcaoutput$modelp1 – dcaoutput$all) * 100 / (dcaoutput$threshold / 
   (100 – dcaoutput$threshold)) 
 #cut off reductions < 0 
 reduction <- pmax(0, reduction) 
 #now create the graph  
 plot(dcaoutput$threshold, reduction, type="l", lwd=2, xlim=c(5, 35),  
  ylim=c(0, 40), xlab="Threshold probability (%)",  
  ylab="Net reduction in interventions per 100 patients") 
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At a probability threshold of 20%, the net reduction in interventions is about 18 per 100 
patients. In other words, at this probability threshold, biopsying patients on the basis of the 
marker is the equivalent of a strategy that reduced the biopsy rate by 18%, without missing any 
cancers.  
 
Joint or conditional tests 
Many decisions in medicine are based on joint or conditional test results. A classic example is 
where patients are categorized on the basis of one test as being at high, low or intermediate 
risk. Patients at high risk are referred immediately for treatment; patients at low risk are 
reassured and advised that no further action is necessary; patients at intermediate risk are sent 
for an additional test, with treatment decisions made accordingly. Alternatively, the results of 
two tests can be combined using an algorithm, rather than a multivariable model.  
 
Decision curve analysis can incorporate joint or conditional testing. All that is required is that 
appropriate variables are calculated from the data set; decision curves are then calculated as 
normal. To see how this works in practice, see the following example.  
 
 dataset2 <- read.delim("c:\dca_example_dataset2.txt", header = TRUE, sep = "\t") 
 attach(dataset2) 
 
These data are from a heart disease study, with data on whether the patient had a subsequent 
cardiovascular event (yes or no), the result of a clinical exam (high low or intermediate risk) and 
the results of a scan.  There are five clinical options: 
 

1. Treat everyone with medication 
2. Treat no-one (i.e. no screening) 
3. Treat everyone at high risk from the clinical exam; don’t do a scan 
4. Scan everyone, then treat everyone who is either high risk from the clinical exam or who 

has a positive scan (i.e. joint approach) 
5. Treat everyone at high risk; scan patients at intermediate risk and treat those with a 

positive scan (i.e. conditional approach) 
 
Here is how to create the variables to use in decision curve analysis. 
 
 #clinical exam: treat high risk patients only 
 clinical_test <- clinical_exam=="high risk"  
 #joint test is positive if either: 
 #scan is positive or clinical exam gives high risk 
 joint <- clinical_exam=="high risk" | scan==1 
 #conditional test: treat if high risk; scan if intermediate risk 
 conditional <- clinical_exam=="high risk" |  
  (clinical_exam=="intermediate risk" & scan==1) 
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Now we have the variables worked out, we can run the decision curve analysis. In 
cardiovascular disease, treatment thresholds are typically 10% - 20.   
 
 dca(yvar=event, xmatrix=cbind(clinical_test, joint, conditional),  
  prob=rep("Y", 3), xstart=0.1, xstop=0.2, ymax=0.15) 
 
This gives the figure below:

 
 
This appears to show that the joint test is the best option, because it has the highest net benefit 
across almost the whole range of threshold probabilities. The obvious disadvantage of the joint 
test is that everyone needs to be scanned, and scanning is expensive and time consuming. To 
incorporate the harm of scanning, we ask a clinician, who tells us that, even if the scan was 
perfectly accurate, few clinicians would conduct more than 30 scans to predict one 
cardiovascular event. The “harm” of the scan is the reciprocal of 30, or 0.0333.  
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To construct the decision curves for each strategy we now incorporate harm. We have to 
calculate harm specially for the conditional test, because only patients at intermediate risk are 
scanned.  
 
 #the harm of a scan is stored in a scalar 
 harm_scan <- 0.0333 
 #in the conditional test, only pts at intermediate risk are scanned 
 intermediate_risk<- clinical_exam=="intermediate risk" 
 #harm of the conditional strategy is: 
 #proportion scanned multiplied by harm of the scan 
 harm_conditional = mean(intermediate_risk)*harm_scan 
 #run the decision curve analysis 
 dcaoutput <- dca(yvar=event, xmatrix=cbind(clinical_test, joint, conditional),  
   prob=rep("Y", 3), xstart=0.1, xstop=0.2) 
 #subtract the harm from the net benefit, as appropriate 
 # the harm of model 1 (clinical test) is zero 
 newmodelp1 <- dcaoutput$modelp1 – 0 
 # the harm of model 2 (joint test) is the harm of the scan 
 newmodelp2 <- dcaoutput$modelp2 – harm_scan 
 # the harm of model 3 (conditional test) is the harm of the conditional test 
 newmodelp3 <- dcaoutput$modelp3 – harm_conditional 
 #now create the graph  
 plot(dcaoutput$threshold, dcaoutput$none, type="l", lwd=2, xlim=c(10, 20),  
  ylim=c(-0.05, 0.15), xlab="Threshold probability (%)", ylab="Net benefit") 
 lines(dcaoutput$threshold, dcaoutput$all, type="l", col=8, lwd=2) 
 lines(dcaoutput$threshold, newmodelp1, type="l", col=1, lty=2) 
 lines(dcaoutput$threshold, newmodelp2, type="l", col=2, lty=2) 
 lines(dcaoutput$threshold, newmodelp3, type="l", col=3, lty=2) 
 legend("topright", cex=0.8, legend=c("None", "All", "Clinical Test",  
  "Joint Test", "Conditional Test"), col=c(17, 8, 1, 2, 3),  
  lwd=c(2, 2, 1, 1, 1, 1), lty=c(1, 1, 2, 2, 2, 2)) 
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Here the conditional test is clearly the best option, in fact, once you take into account the harm 
of scanning, it is clearly not worth scanning everyone: the net benefit of just using the clinical 
exam is often higher than that of the joint test. 
 
Evaluation of published models 
Imagine that a model was published by Brown et al. with respect to our cancer biopsy data set. 
The authors reported a statistical model with coefficients of 1.5 for a positive clinical exam; 
0.042 for each 10 point increase in the marker, and an intercept of -3.5. To test this formula on 
our data set: 
 
 dataset1 <- read.delim("c:\dca_example_dataset1.txt", header = TRUE, sep = "\t") 
 attach(dataset1) 
 logodds_Brown <- 1.5*(clinical_exam=="suspicious for cancer")+ 
  0.42 * (marker/10) - 3.5 
 phat_Brown <- exp(logodds_Brown)/(1+exp(logodds_Brown)) 
 dca(yvar=cancer, xmatrix=phat_Brown, prob="Y", xstart=0.05, xstop=0.35, ymax=0.15) 
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This decision curve suggests that although the model might be useful in the most risk averse 
men, it is actually harmful in patients with more moderate threshold probabilities. As such, the 
Brown et al. model should not be used in clinical practice. 

Application to case-control data 
The problem with applying decision curve analysis to case-control data is that net benefit 
depends on prevalence, and prevalence in case-control studies is fixed by design. This problem 
can be solved by use of recalibration (sometimes called a “Bayes factor”).  

dataset3 <- read.delim("c:\dca_example_dataset3.txt", header = TRUE, sep = "\t") 
attach(dataset3) 
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This is a case-control study to assess whether a certain genetic mutation, along with smoking 
history, can predict a cancer. The matching was 3:1, such that the prevalence of cancer in the 
study was 25%. We will assume that the true risk of cancer by age 75 was 5%. We will first build 
a model using the data set and then obtain the log odds of disease (linear predictor or fitted 
values). 

xb <- predict(lrm(cancer ~ gene + packyears)) 
 

We can then add the Bayes factor to the linear predictor, which is the log of the true odds of 
cancer divided by the odds of cancer in the case-control study.  

 true <- 0.05 
 design <- mean(cancer) 
 Bayes <- log((true/(1-true)) / (design/(1-design))) 
 xb <- xb + Bayes 
 

This is then converted to a probability. We use this probability both as the predictor and the 
outcome for the decision curve, using the assumption that the model is well-calibrated.  

 
 phat <- exp(xb) / (1 + exp(xb)) 
 dca(yvar=phat, xmatrix=phat, xstop=0.4, prob="Y", ymax=0.06)  
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This decision curve can be used to evaluate whether a statistical model based on smoking 
history and gene status should be used determine intensity of cancer screening. The decision 
curve shows that the statistical model would be helpful for decisions with a threshold 
probability of 2% or above. In other words, in the unlikely event that a patient would agree to 
be screened even if he or she had a 1% lifetime risk of cancer, they should be screened 
irrespective of smoking history and gene status; otherwise, screening should be based on the 
risks from the model.  

 

Application to survival data 

Again, we’ll assume that the user has sourced the R files “dca.R” and “stdca.R”; loaded the 
Design and Hmisc libraries; and the example text files are saved locally. 
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 dataset4 <- read.delim("c:\dca_example_dataset3.txt", header = TRUE, sep = "\t") 
 attach(dataset4) 
 
This is a bladder cancer data set consisting of seven variables: some patient characteristics (age 
at surgery, pathologic stage, and nodal status), a time to event variable in months, whether the 
patient recurred, whether the patient died, and then predicted probability of recurrence by 60 
months, obtained from a statistical model (or “nomogram”). 
 
The code for running the decision curve analysis is straightforward. All we have to do is specify 
the timepoint we are interested in. Here we ask: how good is the nomogram at predicting 
recurrence by five years? 
 
 stdca(timepoint=60, time=ttlastfollowrecurrence, failure=recurrence,  
  xmatrix=prednomogram, xstop=0.5, ymax=0.4) 
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This shows that using the nomogram to inform clinical decisions will lead to superior outcomes 
for any decision associated with a threshold probability of above 5% or so. 
 
The input predictor variables for stdca must be given as probabilities, even when the prediction 
model consists of a single variable. In the previous example, the nomogram probability was 
calculated from a published statistical model. Let’s say we wanted to build a model of our own, 
based on age, pathologic stage, and nodal status. The survival probability to time-point t can be 
derived from any type of survival model; here we use a Cox as this is the most common model 
in statistical practice. The formula for a survival probability from a Cox model is given by: 
 

s(t|X) = s0(t)^exp(XB) 
 
Where X is matrix of covariates in the Cox model, B is a vector containing the parameter 
estimates from the Cox model, and s0(t) is the baseline survival probability to time t.  
 
This can be done in R by running a Cox model with age, pathologic stage, and nodal status as 
predictors:  
 
 fit <- cph(Surv(ttlastfollowrecurrence, recurrence) ~ age + pathstage + nodalstatus, 
   x=TRUE, y=TRUE)  
 
The probability of failure to time t can then be computed using the survest function (note that 
you must specify x=TRUE and y=TRUE in the previous cph function for the survest function to 
work). We’ll use a timepoint of 60, which corresponds to 60 months or 5 years in this data set.  
 
 f60 <- 1 - survest(fit, newdata=dataset4, times=60)$surv 
 # now run decision curve 
 stdca(timepoint=60, time=ttlastfollowrecurrence, failure=recurrence,  
  xmatrix=f60, xstop=0.5, ymax=0.3) 
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Bladder cancer data sets are subject to the competing risk of death. To run a competing risk 
analysis, we first create a failure variable that indicated patients who died before they recurred. 
Using the traditional approach, patients are coded 0 if they do not have an event, 1 if they have 
the event of interest before the competing event and 2 if they have the competing event 
before the event of interest.  

 
 firstevent <- recurrence + dead * (recurrence==0) * 2 
 
We then run dca specifying the competing risk.  
 
 stdca(timepoint=60, time=ttlastfollowrecurrence, failure=firstevent,  
  xmatrix=prednomogram, xstop=0.5, cmprsk="TRUE", ymax=0.4) 
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The competing risk model does not change our conclusion that the statistical model would 
improve clinical decision making for all decisions save those for which treatment would be 
recommended for even very low risks, such as 2%.  
The code below shows how to get both the standard decision curve and the decision curves 
adjusted for competing risk on one graph. It is a good example of how graphs can be drawn by 
saving out results from stdca.R and then using the graphing commands.  
 
 # start with the standard Kaplan Meier model, saving the results matrix as “kmresult” 
 kmresult <- stdca(timepoint=60, time=ttlastfollowrecurrence,  
  failure=recurrence, xmatrix=prednomogram, xstop=0.5) 
 
 #now do the competing risk model, saving the results matrix as “crresult” 
 crresult <- stdca(timepoint=60, time=ttlastfollowrecurrence,  
  failure=firstevent, xmatrix=prednomogram, xstop=0.5, cmprsk="TRUE")  
 
 #now create the graph  

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

Threshold probability (%)

N
et

 b
en

ef
it

None
All
Model 1



19 
 

 plot(kmresult$threshold, kmresult$none, type="l", lwd=2, xlim=c(0, 50),  
  ylim=c(-0.05, 0.4), xlab="Threshold probability (%)", ylab="Net benefit") 
 lines(kmresult$threshold, kmresult$all, type="l", col=8, lwd=2) 
 lines(kmresult$threshold, crresult$all, type="l", col=8, lwd=2, lty=2) 
 lines(kmresult$threshold, kmresult$modelp1, type="l", col=1) 
 lines(crresult$threshold, crresult$modelp1, type="l", col=1, lty=2) 
 legend("topright", cex=0.8, legend=c("None", "KM All", "CR All", "KM Model",  
  "CR Model"), col=c(17, 8, 8, 1, 1), lwd=c(2, 2, 2, 1, 1), lty=c(1, 1, 2, 1, 2)) 
 

 
 

Here the decision curves adjusting for competing risk are shown with dashes; the decision 
curves with patients censored at the time of death are shown as solid lines. Competing risk 
shifts all lines down, that is, estimates a lower net benefit, because censoring at the time of 
death overestimates the risk of death.  
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Applying smoothing to decision curves 

As can be observed in the figures above, decision curves for some models are jagged, instead of 
smooth. These bumps reflect random error and are not clinically relevant. To improve the 
presentation of the decision curves, you can apply smoothing to the net benefits output from 
the dca command. As an example, the code below applies smoothing to the decision curve in 
the case of the molecular marker for cancer, applied only to patients with a clinical examination 
that was suspicious for cancer. 

 dataset1 <- read.delim("c:\dca_example_dataset1.txt", header = TRUE, sep = "\t") 
 attach(dataset1) 
 subset.suspicious <- clinical_exam=="suspicious for cancer" 
 # run the decision curve, saving out the results 
 dcaoutput <- dca(yvar=cancer[subset.suspicious], xmatrix= marker[subset.suspicious],  
   prob="N", xstart=0.05, xstop=0.35, ymax=0.2) 
 # apply smoothing to the net benefit of the marker 
 smoothmodelp1 <- smooth(dcaoutput$modelp1, twiceit=TRUE) 
 # now plot the decision curve 
 plot(dcaoutput$threshold, dcaoutput$none, type="l", lwd=2, xlim=c(5, 35),  
  ylim=c(-0.05, 0.2), xlab="Threshold probability (%)", ylab="Net benefit") 
 lines(dcaoutput$threshold, dcaoutput$all, type="l", col=8, lwd=2) 
 lines(dcaoutput$threshold, smoothmodelp1, type="l", col=1, lty=2) 
 legend("topright", cex=0.8, legend=c("None", "All", "Marker"),  
  col=c(17, 8, 1, 2, 3), lwd=c(2, 2, 1), lty=c(1, 1, 2)) 
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